

PreciseFlex[™] 3400 Robots

Service Manual

Part Number 628699, Revision A

Brooks Automation

Information provided within this document is subject to change without notice, and although believed to be accurate, Brooks Automation assumes no responsibility for any errors, omissions, or inaccuracies.

AcuLigner[™], Advan Tag[™], AutoTeach[™], ATR[™], AXM[™], BiSymmetrik[™], CenterSmart[™], Crate to Operate[™], CrossingConnect[™], DARTS[™], Enerta[™], e-RMA[™], e-Spares[™], e-Volution[™], Falcon[™], FIXLOAD[™], FrogLeg[™], GuardianPro[™], Independent Twin Linear Exchange[™], InCooler[™], InLigner[™], Isoport[™], ITLX[™], Jet[™], Jet Engine[™], LEAP[™], LeapFrog[™], LowProfile[™], LPT[™], M2 Nano[™], Marathon 2, Marathon Express, PASIV[™], Pathway[™], PowerPak[™], PowerTools[™], PuroMaxx[™], QuadraFly[™], Radius[™], Radient[™], Radient Express[™], Reliance[™], Reliance ATR[™], RetroEase[™], SCARA[™], SmartPM[™], SMIF-INX[™], SMIF-LPT[™], SPOTLevel[™], The New Pathway to Productivity[™], Time Optimized Trajectory[™], Time Optimal Trajectory[™], Time Optimized Path[™], TopCooler[™], TopLigner[™], VacuTran[™], VersaPort[™], WaferEngine[™], LEAP[™], Pathway[™], GIO, GSB, Guidance 6600, Guidance 6430, Guidance 6420, Guidance 6410, Guidance 6000, Guidance 3400, Guidance 3300, Guidance 3200, Guidance 2600, Guidance 2400, Guidance 2300, Guidance 2200, Guidance 1400, Guidance 1300, Guidance 1200, Guidance 2600, Guidance 2400, Guidance 0006, Guidance 0004, Guidance Controller, Guidance Development Environment, GDE, Guidance Development Suite, GDS, Guidance Dispense, Guidance Input and Output Module, Guidance Programming Language, GPL, Guidance Slave Board, Guidance System, Guidance System D4/D6, PreciseFlex[™] 300, PreciseFlex[™] 400, PreciseFlex[™] 3400, PreciseFlex[™] 55400, PreciseFlex[™] 66600, PreciseFlex[™] D44, PreciseFlex[™] DD6, PreciseFlex[™] 56420, PreciseFlex[™] 65400, PreciseFlex[™] 66600, PreciseFlex[™] 66400, PreciseFlex[™] 66410, PreciseFlex[™] 56420, PreciseFlex[™] 66430, PreciseFlace 0130, PreciseFlex[™] 68BP Slave Amp, PreciseFlex[™] PFD0, PreciseFlace 100, PreciseFlace 0120, PreciseFlace 0130, PreciseFlace 0140, PreciseFlace 1300, PrecisePlace 1400, PreciseFlace 2300, PrecisePlace 2400, PrecisePlace 0130, PrecisePlace 0140, PreciseFlace 1300, PrecisePlace 1400, PreciseVision, and RIO logos are trade

Fusion®, Guardian®, MagnaTran®, Marathon®, Razor®, Spartan®, Vision®, Zaris®, and the Brooks and design logo are registered U.S. trademarks of Brooks Automation.

All other trademarks are properties of their respective owners.

© 2024 Brooks Automation. All rights reserved. The information included in this manual is proprietary information of Brooks Automation, and is provided for the use of Brooks customers only and cannot be used for distribution, reproduction, or sale without the express written permission of Brooks Automation.

This technology is subject to United States export Administration Regulations and authorized to the destination only; diversion contrary to U.S. law is prohibited.

Brooks Automation
15 Elizabeth Drive
Chelmsford, MA
01824-2400
Tel: +1 978-262-2400
Fax: +1 978-262-2500

Brooks Automation, PreciseFlex Collaborative Robots 201 Lindbergh Avenue Livermore, CA 94551 Tel: +1-408-224-2838

Copyright © 2024, Brooks Automation

Worldwide Headquarters 15 Elizabeth Drive Chelmsford, MA 01824 U.S.A.

Brooks Automation, PreciseFlex Collaborative Robots 201 Lindbergh Avenue Livermore, CA 94551 U.S.A

Technical Support

Location	Contact	Website	
North America	+1-800-447-5007 (Toll-Free) +1-978-262-2900 (Local) +1-408-224-2838 (PreciseFlex TM)		
Europe	support_preciseflex@brooksautomation.com		
Japan	+81 120-255-390 (Toll Free) +81 45-330-9005 (Local)		
China	+86 21-5131-7066	http://www.brooks.com/	
Taiwan +886 080-003-5556 (Toll Free) +886 3-5525258 (Local)			
Korea 1800-5116 (Toll Free)			
Singapore	+65 1-800-4-276657 (Toll Free) +65 6309 0701 (Local)		

General Emails

Division	Email Address
Sales	sales_preciseflex@brooksautomation.com
Technical Support	support_preciseflex@brooksautomation.com
Technical Publications	Technical.Publications@brooksautomation.com

Brooks

Brooks Automation 15 Elizabeth Drive Chelmsford, MA 01824-2400 Tel: +1 978-262-2400 Fax: +1 978-262-2500 www.brooks.com

Brooks Locations Worldwide:

Brooks Automation

46702 Bayside Parkway Fremont,CA 94538 Tel: +1-510-661-5000 Fax: +1-510-661-5166

Brooks Automation

AIM Servicios Administrativos S de RL de CV Carretera Huinalá km 2.8 Parque Industrial Las Américas 66640 Apodaca, NL Mexico Tel: +52 81 8863-6363

Brooks Automation

(Germany) GmbH Ernst-Ruska-Ring 11 07745 Jena, Germany Tel: +49 3641 4821 100 Fax: +49 3641 4821 4100

Brooks Automation

(Germany) GmbH Daimler-Straße 7 78256 Steißlingen, Germany Tel: +49-7732-9409-0 Fax: +49-7732-9409-200

Brooks Automation

9601 Dessau Road, Suite 301 Austin, TX 78754 Tel: +1 512-912-2840 Toll-Free: +1 800-367-4887

Brooks Automation

(Israel) Ltd. Mevo Yerach 5 Kiryat-Gat 82000 Israel Tel: +972 8672 2988 Fax: +972 8672 2966

Brooks Technology (Shanghai) Limited

2nd Floor, No. 72, 887 Zuchongzhi Road Zhangjiang Hi-Tech Park Pudong, Shanghai China 201203 Tel: +86-21-5131-7070 Fax: +86-21-5131-7068

Brooks Japan K.K.

HEADQUARTERS Nisso Bldg. No 16, 9F 3-8-8 ShinYokohama, Kohoku-ku Yokohama, Kanagawa 222-0033 Tel: +81-45-477-5570 Fax: +81-45-477-5571

Brooks Japan K.K.

YOKOHAMA TECHNICAL CENTER 852-1 Kawamuko-cho, Tsuzuki-ku Yokohama, Kanagawa 224-0044 Tel: +81-45-477-5250 Fax: +81-45-470-6800

Brooks Japan K.K. KUMAMOTO SERVICE OFFICE 202 Mirai Office II 312-1 Tatsudamachi Yuge Tatsuda, Kumamoto 861-8002 Tel: +81-96-327-9720 Fax: +81-96-327-9721

Brooks CCS Japan K.K.

CONTAMINATION CONTROL SOLUTIONS Nisso Bldg. No 16, 9F 3-8-8 ShinYokohama, Kohoku-ku Yokohama, Kanagawa 222-0033 Tel: +81-45-477-5570 Fax: +81-45-477-5571

Brooks Automation Ltd.

TAIWANHEADQUARTERS 5F-5, No.32, Tai-Yuen Street Chu-Pei City Hsinchu County 302, Taiwan, R.O.C. Tel: +886-3-552 5258 Fax (G&A): +886-3-552 5255 Fax (Sales): +886-3-552 5200

Brooks Automation Korea, Inc.

#35 Giheungdanji-Ro 121Beon-Gil Giheung-Gu, Yongin-Si Gyeonggi-Do, 17086 Korea Tel : +82-31-288-2500 Fax: +82-31-287-2111

Brooks Automation CCS RS AG

Lohstampfestrasse 11 CH-8274 Tagerwilen, Switzerland Tel: + 41 71-666-72-10 Fax: + 41 71-666-72-11

Brooks Automation Korea

#35 Giheungdanji-Ro 121Beon-Gil Giheung-Gu, Yongin-Si Gyeonggi-Do, 17086 Korea Tel : +82-31-288-2500

Brooks Automation (S) Pte Ltd

51-18-C1 Menara BHL, 57 Jalan Ahmad Shah, 10050, Penang, Malaysia Tel: +60 4 3701012 Fax: +60 4 3701015

Fax: +82-31-287-2111

Brooks Automation

(Singapore) Pte Ltd Blk 5008 Ang Mo Kio Avenue 5 #05-08, Techplace II Singapore 569874 Tel: +65-6836-3168 Fax: +65-6836-3177

Brooks Automation Ltd.

TAINAN OFFICE 3F., No.11, Nanke 3rd Rd., Xinshi Dist. Tainan Science Park Tainan City 74147, Taiwan (R.O.C.) TEL: +886-6-505-0268 FAX: +886-6-505-5228

Brooks Automation

Precise Collaborative Robotics 201 Lindbergh Drive Livermore, CA 94551 Tel: +1-978-262-2400

Revision History

Revision	ECO	Date	Action	Author
A	EC154083	4/19/2024	Released manual at Rev. A to follow standard Brooks technical publication styles.	M. Ashenfelder

Table of Contents

1. Safety	1
Safety Setup	1
Authorized Personnel Only	1
Explanation of Hazards and Alerts	2
Safety Text	2
Safety Icons	2
Signal Words and Color	2
Alert Example	3
General Safety Considerations	4
Mechanical Hazards	6
Electrical Hazards	7
Ergonomic Hazards	8
Emergency Stop Circuit (E-Stop)	10
Recycling and Hazardous Materials	10
2. Service Procedures	11
Recommended Tools	11
Troubleshooting	11
Encoder Operation Error	13
Replacing the Encoder Battery	14
Calibrating the Robot: Setting the Encoder Zero Positions	16
Replacing Belts and Motors	21
General Belt Tensioning	21
Tensioning the J1 (Z Column) Belts	22
Tensioning the 1st Stage Belt	22
Tensioning the 2nd Stage Belt	23
Tensioning the J2 Belt	25
Tensioning the J3 and J4 Belts	28
Tensioning the Belt on the Optional Linear Axis	29
Replacing the Power Supplies, Energy Dump PCA, or J1 Stage Two (Output) Timing Belt \dots	30
Replacing the Robot Controller	34
Replacing the Linear Axis Controller	37
Replacing the GIO Board	39
Replacing the Main Harness	41
Replacing the Outer Link Harness	41
Replacing the Z-axis Motor Assembly	44
Replacing the J2 (Shoulder) Axis Motor or Timing Belt	47
Replacing the J3 (Elbow) Axis Motor or Timing Belt	51
Replacing the J4 (Wrist) Axis Motor or Timing Belt	54
Appendices	57
Appendix A: Product Specifications	58
Appendix B: Environmental Specifications	60
Appendix C: Spare Parts List	61
Appendix D: Preventative Maintenance	62

Appendix E: Verification of PreciseFlex 3400 Collision Forces	64
Appendix F: Belt Tensions, Gates Tension Meter	65
Appendix G: Table A2 from ISO/TS 15066: 2016, Biomechanical Limits	67
Appendix H: Safety Circuits for PreciseFlex 3400 3 kg Payload	
Appendix I: Robot Anatomy	71
Appendix J: System Diagram and Power Supplies	74
Appendix K: Torque Values for Screws	90

1. Safety

Safety Setup

Brooks uses caution, warning, and danger labels to convey critical information required for the safe and proper operation of the hardware and software. Read and comply with all labels to prevent personal injury and damage to the equipment.

Authorized Personnel Only

This product is intended for use by trained and experienced personnel. Operators must comply with applicable organizational operating procedures, industry standards, and all local, regional, national, and international laws and regulations.

Explanation of Hazards and Alerts

This manual and this product use industry standard hazard alerts to notify the user of personal or equipment safety hazards. Hazard alerts contain safety text, icons, signal words, and colors.

Safety Text

Hazard alert text follows a standard, fixed-order, three-part format.

- · Identify the hazard
- State the consequences if the hazard is not avoided
- State how to avoid the hazard.

Safety Icons

- Hazard alerts contain safety icons that graphically identify the hazard.
- The safety icons in this manual conform to ISO 3864 and ANSI Z535 standards.

Signal Words and Color

Signal words inform of the level of hazard.

DANGER	Danger indicates a hazardous situation which, if not avoided, will result in serious injury or death . The Danger signal word is white on a red background with an exclamation point inside a yellow triangle with black border.
	Warning indicates a hazardous situation which, if not avoided, could result in serious injury or death . The Warning signal word is black on an orange background with an exclamation point inside a yellow triangle with black border.
	Caution indicates a hazardous situation or unsafe practice which, if not avoided, may result in minor or moderate personal injury . The Caution signal word is black on a yellow background with an exclamation point inside a yellow triangle with black border.
NOTICE	Notice indicates a situation or unsafe practice which, if not avoided, may result in equipment damage . The Notice signal word is white on blue background with no icon.

Alert Example

The following is an example of a Warning hazard alert.

Number	Description
1.	How to Avoid the Hazard
2.	Source of Hazard and Severity
3.	General Alert Icon
4.	Signal Word
5.	Type of Hazard
6.	Hazard Symbol(s)

General Safety Considerations

WARNING

Robot Mounting

Before applying power, the robot must be mounted on a rigid test stand, secure surface, or system application. Improperly mounted robots can cause excessive vibration and uncontrolled movement that may cause equipment damage or personal injury.

• Always mount the robot on a secure test stand, surface, or system before applying power.

WARNING

Do Not Use Unauthorized Parts

Using parts with different inertial properties with the same robot application can cause the robot's performance to decrease and potentially cause unplanned robot motion that could result in serious personal injury.

- Do not use unauthorized parts.
- Confirm that the correct robot application is being used.

WARNING Magnetic Field Hazard

This product contains magnetic motors that can be hazardous to implanted medical devices, such as pacemakers, and cause personal harm, severe injury, or death.

• Maintain a safe working distance of 30 cm from the motor when with an energized robot if you use a cardiac rhythm management device.

Unauthorized Service

Personal injury or damage to equipment may result if this product is operated or serviced by untrained or unauthorized personnel.

 Only qualified personnel who have received certified training and have the proper job qualifications are allowed to transport, assemble, operate, or maintain the product.

Inappropriate Use

Use of this product in a manner or for purposes other than for what it is intended may cause equipment damage or personal injury.

- Only use the product for its intended application.
- Do not modify this product beyond its original design.
- Always operate this product with the covers in place.

CAUTION Seismic Restraint

The use of this product in an earthquake-prone environment may cause equipment damage or personal injury.

 The user is responsible for determining whether the product is used in an earthquake prone environment and installing the appropriate seismic restraints in accordance with local regulations.

Mechanical Hazards

Image: Caution Pinch Point Moving parts of the product may cause squeezing or compression of fingers or hands resulting in personal injury. • Do not operate the product without the protective covers in place.

Automatic Movement

Whenever power is applied to the product, there is the potential for automatic or unplanned movement of the product or its components, which could result in personal injury.

- Follow safe practices for working with energized products per the facility requirements.
- Do not rely on the system software or process technology to prevent unexpected product motion.
- Do not operate the product without its protective covers in place.
- While the collaborative robotics system is designed to be safe around personnel, gravity and other factors may present hazards and should be considered.

CAUTION

Vibration Hazard

As with any servo-based device, the robot can enter a vibratory state resulting in mechanical and audible hazards. Vibration indicates a serious problem. Immediately remove power.

• Before energizing, ensure the robot is bolted to a rigid metal chamber or stand.

Electrical Hazards

Refer to the specifications of the Guidance Controller Quick Start Guide for the electrical power.

Electrical Burn

Improper electrical connection or connection to an improper electrical supply can result in electrical burns resulting in equipment damage, serious injury, or death.

• Always provide the robot with the proper power supply connectors and ground that are compliant with appropriate electrical codes.

WARNING

Electrical Fire Hazard

All energized electrical equipment poses the risk of fire, which may result in severe injury or death. Fires in wiring, fuse boxes, energized electrical equipment, computers, and other electrical sources require a Class C extinguisher.

- Use a fire extinguisher designed for electrical fires (Class C in the US and Class E in Asia).
- It is the facility's responsibility to determine if any other fire extinguishers are needed for the system that the robot is in.

NOTICE

Improper handling of the power source or connecting devices may cause component damage or equipment fire.

- Connect the system to an appropriate electrical supply.
- Turn off the power before servicing the unit.
- Turn off the power before disconnecting the cables.

Ergonomic Hazards

CAUTION Trip Hazard

Cables for power and communication and facilities create trip hazards which may cause serious injury.

• Always route the cables where they are not in the way of traffic.

Emergency Stop Circuit (E-Stop)

The integrator of the robot must provide an emergency stop switch.

WARNING Emergency Stop Circuit Using this product without an emergency stop circuit may cause personal injury. Customer is responsible for integrating an emergency stop circuit into their system. Do not override or bypass the emergency stop circuit.

Recycling and Hazardous Materials

Brooks Automation complies with the EU Directive 2002/96/EU Waste Electrical and Electronic Equipment (WEEE).

The end user must responsibly dispose of the product and its components when disposal is required. The initial cost of the equipment does not include cost for disposal. For further information and assistance in disposal, please email Brooks Automation Technical Support at support_preciseflex@brooksautomation.com.

Recommended Tools

The following tools are recommended for these service procedures:

- 1. Gates Sonic Belt Tension Meter, Model 507C for checking timing belt tension.
- A set of metric "stubby" hex L-keys, for example McMaster Carr PN 6112A21 with 1.5, 2.0, 2.5, 3.0, 4, 5, and 6 mm L Keys.
- 3. A set of metric hex drivers including 1.27, 1.5, 2.0, 2.5 and 3.0 mm driver, for example McMaster Carr PN 52975A21.
- 4. A pair of tweezers or needle nose pliers.
- 5. A pair of side angle cutters.
- 6. Small flat bladed screw driver, with 1.5 mm wide blade typical.
- 7. M5 socket driver or M5 open end wrench or pliers.

Troubleshooting

PreciseFlex robots and controllers have an extensive list of error messages. Refer to the *PreciseFlex Library* to search for a specific error message and cause. Listed in Table 2-1 are a few errors that may be generated by hardware failures.

Table 2-1: Hardware Failure Errors

Symptom	Recommended Action
System error m	essage generated
"E-Stop not Enabled"	Check both Phoenix plug and 9 pin Dsub for E-stop jumpers.

Troubleshooting

Symptom	Recommended Action	
"Encoder Battery Low"	Replace absolute encoder battery in base of robot	
"Encoder Battery Down"	f encoder cable has been disconnected, recalibrate robot. If battery voltage has dropped below 2.5 V replace encoder battery and recalibrate robot.	
"Encoder Operation Error"	Joint rotated too quickly with power off. See Procedure below.	
"Encoder Data, Accel/decel Limit Error"	Check that the FPGA code is dated Jan 25, 2012 or later. Upgrade FPGA if necessary. Encoder cable may be damaged and encoder is getting intermittent communication, causing apparent jumps in position. Check encoder connectors on flat ribbon cable. Replace cable. Replace motor.	
"Encoder Communication Error"	Check that the FPGA code is dated Jan 25, 2012 or later. Check encoder connectors on flat ribbon cable. Replace encoder cable or motor/encoder.	
"Encoder quadrature error"	Replace slip ring. Replace motor/encoder (only Gripper motor). See the <i>PreciseFlex Servo Gripper</i> user manual.	
"Missing zero index"	See "Encoder quadrature error"	
"Motor duty cycle exceeded"	Reduce speed or acceleration of robot. Check for instability.	
"Amplifier under voltage"	Motor power supply has reached current limit and shutdown. Slow down robot. Check Energy Dump PCA. Replace 48 V supply.	
"Amplifier Fault"	Check harness and motor for shorts.	
"Amplifier Over Voltage"	Replace energy dump board. Check harness for shorts.	
"Soft Envelope Error"	Make sure robot not pressing against surface. If this occurs on the gripper repeatedly, replace slip ring. See the <i>PreciseFlex Servo Gripper</i> user manual.	
"Hard Envelope Error"	Typically means robot has crashed into something.	
Pneumatic Gripper Sensor not working	Check continuity of cable through wrist. Check green lights on sensor to see if sensor is triggering See the <i>PreciseFlex Servo Gripper</i> user manual.	
"Time Out Nulling Error"	Check that joint is free to move with brake off. Check that joint is not vibrating or unstable. If unstable check belt tension. If Gripper, replace slip ring after checking that brake releases.	
"Joint Out of Range"	The joint actual or commanded position may be beyond the software limit stop. Move joint back into range while monitoring virtual pendant or check program for commanded position.	
"PAC Files Corrupted"	See recovering from corrupted PAC Files	
Physical or audible problem		
Brown streaks on linear bearing	Clean with alcohol and add grease to bearing blocks. This should not be required sooner than 20,000 hours of run time. Grease is Alvania Grease EP2 from Shell.	
Mechanical noise from any joint	Check joint bearings for failure. Re-tension belt.	
Loud buzzing or vibration from any joint	Re-tension timing belts. If timing belt will not hold tension, replace.	
Squeaking from Z belt	Apply thick grease to front and rear edges of belt, (Mobile 222 XP). Belt can get stiff over time and squeak against pulley flanges.	

Encoder Operation Error

The PreciseFlex 3400 robot is equipped with absolute encoders that keep track of the robot position even when AC power to the robot is disconnected. There is a battery in the base of the robot that provides standby power to the encoders. In standby mode, there is a limit on how quickly the motor can turn and still have the standby counter operate properly. The limits are 6,000 rpm and 4000 rad/s². Even at 100% speeds the robot joints normally do not move faster than about 2,000 rpm and 1300 rad/s². However, if the robot is shocked during shipping, it is possible the standby operation acceleration error limit may be exceeded. This can generate an encoder operation error that will prevent the robot from homing after power up.

This error will be displayed in the Operator Window of the Web Interface as "Encoder Operation Error" Robot 1: as "Encoder Operation Error" Robot 1: as "Encoder Operation Error" Robot 1: as "Encoder Operation Error"

Assuming the robot has not been damaged by the shipping process, this error can be reset by the following procedure:

Step	Action			
1.	Access the Web Operator Interface to the robot with either "Maintenance" or "Administrator" privileges.			
2	In the Setup menu, select Sy Encoder. System Control Fands Eutop Methodics System Setup Position Loop Turing Current Loop Turing Current Loop Turing Current Loop Turing System Setup Position Loop Turing Current Loop Turing Current Loop Turing System Setup Position Loop Turing Current Loop Turing Current Loop Turing System Setup System Setup System Setup System Setup System Setup System Setup System Setup	ystem Setup > Hardware	Funing and Diagnostics Mer Diagnostics Metro Test Fixture 0 -1,-30630,-60322,74064 0, 0, 0, 0 -00000000, 0000004, 00000004, 00000004, 00000004, 00000004, 00000004, 00000004, 00000004, 00000004, 00000004, 00000004, 00000004, 00000004, 00000004, 00000004, 00000004, 00000000	s > Absolute
۷.	Operating mode Debug and trace Sanal Ports Sanal Ports Network System DIO ModBus TCP Task control Data logger Misc GPL program variable GPL program variable GPL program variable GPL program variable Sister Cartesian contro Basic parameters Traj Gen switches Misc DIO/AIO Lado settings Joint/motor factors Motion timing value Dynamic parameter	12254 Multi-turn data, rev 1225 Finder communication error count 12267 Encoder # of consecutive bad readings 10251 Ignore encoder battery. 14065 Reset multi-turn and errors 14065 Reset and initialize encoder (may tai Selected Ent Overspeed Reduced res Runtime coo Multi-turn or (reserved) Multi-turn or Communical	0, 2, 0, 0 0, 0, 0, 0, 0 0,	≝ *(100% •

Replacing the Encoder Battery

Step	Action
3.	In the drop-down menu at the top right of the screen, select the robot axis that was associated with the error and check to see if the Overspeed panel is yellow. This indicates an overspeed error during encoder standby mode due to shock or vibration. This error can be reset by selecting the reset button next to Reset and initialize encoder . This button resets error flags, but does not reset the encoder counters. The robot can then be homed normally.
4.	 For cases where the encoder operation error was triggered by shipping vibration, IN MOST CASES the encoder will not have lost any position data. However after homing the robot it is a good idea to move the robot to the calibration position (using the calibration pins if desired-see Calibrating the Robot), or another known position, and check the joint angles in the Virtual Pendant in the Web Operator Interface. The joint angles in the Calibration Position are: Z-axis: -1 mm (-2 mm for Beta robots) J2 or Shoulder: -90 J3 or Elbow: 179.99 J4 or Wrist: -180

If the robot joints after this procedure followed by homing are different from the above, then the robot needs to be re-calibrated. See "<u>Replacing the Encoder Battery</u>."

Replacing the Encoder Battery

The Encoder Battery is designed to last for several years with robot power turned off. With robot power turned on, there is no drain on the battery. The battery voltage is monitored by the system. The nominal battery voltage is 3.6 Volts. If the battery voltage drops to 3.3 Volts an error message "Encoder Battery Low" is generated. At this level the absolute encoder backup function will still work, however the Battery should be replaced. If the voltage drops to 2.5 Volts, an error message "Absolute Encoder Down" is generated. At this point, the absolute encoder backup function will not work.

If any motor/encoder is disconnected from the encoder battery by disconnecting the encoder cable, the "Encoder Battery Low" or "Encoder Battery Down" message will be generated. However, in this case, the encoder battery does not need to be replaced. It is only necessary to re-calibrate the robot (see Figure 2-1).

Figure 2-1: Encoder Battery Pack

Tools Required:

• 3.0 mm hex driver or hex L wrench

Parts Required:

- New Encoder Battery
- 6 in long by 125 wide tie wrap

To replace the Encoder Battery, perform the following procedure:

Step	Action
1.	Turn off power to the robot and remove the AC power plug.
2.	Remove the top plate of the robot by removing the (4) M5 low socket head screws from the top plate of the robot that attach the top plate to the Z column. Lift up the top plate.
3.	Remove the Front Cover by lifting it out vertically.
4.	The Encoder Battery pack is located at the base of the electronics bracket behind the Z column front cover. Disconnect the connector from J1 at the FFC board, insert the battery pack into the clips, and reconnect the connector at J1.
5.	Replace the front cover and top plate.

If the instructions are followed to turn off the robot and remove the battery, the error message "Encoder Battery Down" will display. This procedure will require robot recalibration after changing the battery.

Calibrating the Robot: Setting the Encoder Zero Positions

Cal_PP is a service program that must be run to set the zero positions of the absolute encoders on each motor. The zero positions must be re-established if any of the motors are replaced, their cables disconnected for a long duration, or the encoder backup battery has been disconnected.

To run Cal_PP, the controller must be configured to run GPL programs and Cal_PP must be loaded into the controller's memory (See "<u>Appendix D: Preventative Maintenance</u>").

Tools Required:

- 2.5 mm and 3.0 mm hex drivers or hex L wrenches
- Set of (3) Calibration Dowel Pins, located in plastic bag inside the hollow slot in the front cover

The following procedure describes the steps for defining the zero positions of the PreciseFlex 3400 robot axes using Cal_PP.

Step	Action
1.	Enable power to the robot's controller, but do not turn on power to the motors. (This procedure should be executed with the motor power off. The robot does not move).

Part Number: 628699 Rev. A

Step	Action
	The CALPP program is typically installed at the factory and should be loaded into flash memory. Using the Web-based Operator Control Panel, first unload any currently loaded programs. Select the UnLoad item in the left scrolling window and click Perform Operation . This ensures that no GPL project is currently selected for execution.
2.	Update Auto Control Panels Virtual Pendant Virtual Pendant Virtual Pendant Communication Local I/O Remote I/O System Information System Information System System Information
	Select the Load item and click Perform Operation . This displays a pop-up list of Projects that are in the flash disk and available for execution.
3.	Control Panels System: PrecisePiex Hoo Kodou Update Sup MotonBlock Utilities Update Auto Control Panels System Messages Virtual Robots Communication B cont JO Remote JO B System Information System state: Off: System Speed System Speed Sys

Calibrating the Robot: Setting the Encoder Zero Positions

Step	Action
4.	In the window, click CALPP_RevXX and click Select. To execute the Project, select Start application and click Perform Operation.
	If CALPP is not loaded in the robot, first Load Cal_PP into the controller's memory from a PC, using the web Operator Control Panel, as described in <u>Software Reference</u> .
5.	Manually move the robot into the configuration shown in <u>Step 10</u> . The top cover of the outer link will need to be removed by removing the (4) M3 X 20 SHCS that are located in counter bores under the outer link.
	NOTE: If the optional Linear Axis is installed, move the Linear Axis carriage to the hard stop near the connector end cap. For the Linear Axis calibration, be sure to use CALPP Revision 21 or later.
6.	Ensure that the Z-axis is resting on the lower hard stop by releasing the Z-axis brake by pushing on the brake release button under the shoulder while supporting the robot arm, and lowering the robot arm gently until it rests on the lower hard stop.
7.	If the Calibration Pins have not already been removed from the robot, it may be necessary to remove the top cover of the robot by removing the (4) M5 Low Head screws with a 3.0 mm hex driver and then removing the front cover to access the bag with the Calibration Pins which are inside the front cover extrusion at the bottom.
8.	Insert an M3 X 30 mm Calibration Dowel Pin into the J4 (wrist) pulley with the gripper positioned under the outer link and rotate the gripper back and forth until the pin drops into a slot in the outer link, locating the gripper under the center of the outer link. See the <i>PreciseFlex Servo Gripper</i> user manual.
9.	Insert a tapered 0.5 in Calibration Dowel Pin into the hole in the bottom of the shoulder. Rotate the inner link counter-clockwise until it rests against this pin as shown in <u>Step 10</u> .

Calibrating the Robot: Setting the Encoder Zero Positions

Part Number: 628699 Rev. A

Calibrating the Robot: Setting the Encoder Zero Positions

Step	Action
11.	<image/>
12.	With the CALPP application loaded, select Start Application and then click Perform Operation. The application should start and prompt the user to confirm the correct robot position for calibration. System Messages

Replacing Belts and Motors

Step	Action
13.	The CALPP application takes about 1 minute to run.
14.	After calibration is complete, use the brake release button and move the Z-axis up from the hard stop. Failing to do this will produce an error as the robot is outside of the soft stop limits.
15.	Ensure that the pins are removed.
16.	Enable power and home the robot. Calibration does not take effect until the robot is homed.

Replacing Belts and Motors

The timing belts and motors are designed to last the life of the robot. It is not expected that they will need to be replaced in the field. In most cases, if a belt or a motor needs to be replaced, the robot should be returned to the factory. While there are procedures at the end of this manual for replacing belts and motors, only experienced service technicians should attempt these procedures.

General Belt Tensioning

The PreciseFlex 3400 has been designed to make belt tensioning very simple. See "<u>Appendix E:</u> <u>Belt Tensions, Gates Tension Meter</u>" for belt tension specifications.

Tensioning the J1 (Z Column) Belts

Tensioning the 1st Stage Belt

Tools Required:

• 3.0 mm hex driver or hex L wrench

Step	Action
1.	Turn off robot power and remove the AC power cord.
2.	Remove the Top Plate of the robot by removing the (4) M5 socket head screws from the top plate of the robot that attach the top plate to the Z column. Lift up the Top Plate.
3.	Remove the Front Cover by lifting it out vertically.
4.	Loosen the (2) M4 locking screws on the J1 Motor Mount Bracket to allow the Mount Bracket to slide up and down.
5.	Adjust the M4 Tension Screw compressing the spring assembly. The tension spring should be compressed until the spring length is 5.5 mm under the washer.

Tensioning the J1 (Z Column) Belts

Tensioning the 2nd Stage Belt

Tools Required:

- Gates Sonic Belt Tension Meter, Model 507C
- 3.0 mm hex driver or hex L wrench
- 2.5 mm hex driver or hex L wrench

Step	Action
1.	Turn off the robot power and remove the AC power cord.
2.	Remove the Top Plate of the robot by removing the (4) M5 socket head screws from the top plate of the robot that attach the top plate to the Z column. Lift up the Top Plate.

Tensioning the J1 (Z Column) Belts

Step	Action
3.	Remove the Front Cover by lifting it out vertically.
4.	Loosen the (2) M4 locking screws and the M5 shoulder screw on the Z idler plate. Tension Adjust Screw Z Axis Idler Plate M5 Shoulder Screw M4 Locking Screws M4 Locking Screws Measure this side only if using Alternate Method for long Z strokes.
5.	The tension is set to the value in " <u>Appendix E: Belt Tensions, Gates Tension Meter</u> " by adjusting the M5 set screw which pushes on a spring in the Z Axis Idler Plate. Re-tighten the 3 screws and replace the Front Cover and Top Plate. Alternate Method: For the 750 mm and 1160 mm Z travel robots, it can sometimes be difficult to get a good tension reading for the spans for these long belts, which are 880 mm and 1290 mm respectively and as a result have low vibration frequencies. In this case it may be easier to position the Z carriage so that the span from the top idler pulley to the Z carriage is 530 mm, which is the span for the 400 mm Z stroke when measured on the left hand side of the belt as shown above. With the carriage at this location with a span of 530 mm, for these longer travel Z strokes, a user can then measure the tension on the right hand side of the belt, and use the values for tension and frequency for the 400 mm Z stroke.

Tensioning the J2 Belt

DANGER Electrical Shock Before tensioning the timing belts, the AC power should be disconnected. Removing the front cover allows access to the AC power terminals.

Tools Required:

- Gates Sonic Belt Tension Meter, Model 507C
- 3.0 mm hex driver or hex L wrench
- 2.5 mm hex driver or hex L wrench
- 2.0 mm hex ball driver or hex L wrench

In order to re-tension the J2 (shoulder) Timing Belt, perform the following steps:

Step	Action
1.	Move the robot arm to the top of the Z Column travel.
2.	Turn off the robot power and remove the AC power cord.
3.	Remove the Top Plate of the robot by removing the (4) M5 socket head screws from the top plate of the robot that attach the top plate to the Z column. Lift up the Top Plate.

Tensioning the J2 Belt

Step	Action
	Remove the Front Cover by lifting it out vertically.
4.	Z Carriage Stiffener Plate
	Remove the Z Carriage Stiffener Plate by removing the M3 X 6 FHCS attaching it to the Z Carriage (shoulder).
5.	Tension Spring Clamping Screws Measure Tension This Span

Tensioning the J2 Belt

Step	Action
6.	Loosen the (3) M3 SHCS and (1) M4 Shoulder screw clamping the J2 Motor Mount Plate to the Z Carriage. It may be necessary to remove the tie wrap securing the J2 Motor cables to the Z carriage in order to access the clamping screw under these cables. It is best to measure the belt tension with a tension meter as described in " <u>Appendix E: Belt Tensions, Gates Tension Meter</u> ." If a belt tension meter is not available, the Tension Leaf Spring will automatically reset the belt tension. It is helpful to jiggle the motor a little bit to be sure any friction is overcome. The motor can be easily grasped by reaching under the Z carriage (shoulder). Then re-tighten the clamping screws. Replace the tie wrap if it was removed.
7.	Replace the Z Carriage Stiffener Plate.
8.	Replace the Front Cover.
9.	Replace the Top Plate.

Tensioning the J3 and J4 Belts

Once the hatch cover is removed, loosen the appropriate motor locking screws one turn to unclamp the motor.

NOTE: Do not loosen these screws more than one or two turns or the retaining nuts can fall off inside the link.

Step Action Insert the microphone from the belt tension meter near the belt to measure belt tension and adjust the M4 SHCS to adjust belt tension. Be sure to measure the belt tension eight times, at 45 increments of the pulley in the axis rotation and set the tension at the position that has the lowest tension. Motor Locking Screws 1. Motor Locking Screws Microphone on Pluck belt gently belt tension with L key to measure tension. meter 2.

To tension the J3 and J4 belts, perform the following procedure:

Tensioning the Belt on the Optional Linear Axis

Tools Required:

- Gates Sonic Belt Tension Meter, Model 507C
- 3.0 mm hex driver or hex L wrench

To tension the Linear Axis Belt:, perform the following procedure:

Step	Action
1.	Remove the linear axis cover by sliding the carriage to one end of travel, remove the (4) M4 X 30 mm SHCS from the end caps retaining the cover. It may also be necessary to loosen the connector end cap by loosening the screws attaching the connector end cap to the Linear Axis Extrusion, so that the cover can be lifted up and removed.
2.	Slide the carriage so that there is a 500 mm span of the belt between the belt tension clamp block and the idler roller on the carriage.
3.	Loosen the (2) clamping screws on the belt tension clamp block slightly. Adjust the belt tension screw to adjust the belt tension to the values in " <u>Appendix E: Belt Tensions, Gates Tension Meter</u> ." Tighten the clamping screws.
4.	Move the carriage back and forth the full length of travel and check the belt tension again.
5.	Replace the cover.
Replacing the Power Supplies, Energy Dump PCA, or J1 Stage Two (Output) Timing Belt

 DANGER

 Electrical Shock

 Before replacing the power supplies, the AC power should be removed.

Tools Required:

- 3.0 mm hex driver or hex L wrench
- 2.5 mm hex driver or hex L wrench

Spare Parts Required:

- 24 VDC power supply, PS10-EP-24150 or
- 48 VDC power supply, PS10-EP-48500 or
- J1 Stage Two Belt, PN PF00-MC-X0022. (400 mm) or PF00-MC-X0023 (750 mm)

To replace the power supplies, Energy Dump PCA, or J1 Stage Two (Output) timing belt, perform the following procedure:

Step	Action
1.	Move the robot arm to the top of the Z Column travel.
2.	Turn off the robot power and remove the AC power cord.
3.	Remove the Top Plate of the robot by removing the (4) M5 socket head screws from the top plate of the robot that attach the top plate to the Z column. Lift up the Top Plate.

Replacing the Power Supplies, Energy Dump PCA, or J1 Stage Two (Output) Timing Belt

Step	Action
	Remove the Front Cover by lifting it out vertically.
4.	M5 Set Screw M4 Locking Screws M5 Shoulder Screw M5 Shoulder Screw Z Carriage Inner Cover
5.	Lay the robot down on its back side on a table where there is room to work.
6.	Remove the Idler Plate Assembly by removing the M5 set screw that compresses the Idler Plate Spring, the (2) M4 SHCS that clamp the Idler Plate, and the M5 Shoulder Screw that forms the Idler Plate pivot. Be careful not to drop the pressure washer and tension spring that are inside the Idler Plate assembly. The tension spring presses against an M5 shoulder screw to tension the Z-axis Stage 2 belt.
7.	Remove the remaining M5 shoulder screw.
8.	Disengage the Z Carriage Timing Belt from the lower Drive Pulley. If it is necessary to replace the Z Carriage 2 nd Stage Timing Belt, remove the Z Carriage Inner Cover and then the Timing Belt Clamp from the Z carriage by removing the (2) M4 X 12 mm SHCS and lock washers and replace the belt.
9.	Remove the left splash guard by removing the M3 X 8 mm SHCS on the retaining bracket.

Step	Action
	Remove the (4) screws that hold the Electronic Chassis to the Z Extrusion and the (2) screws that attach the Electronic Chassis and ground wire to the Base Plate.
10.	J1 Encoder Connector J1 Motor Connector Battery Connector Splash Guard E Chassis Screw
11.	Remove the J1 motor and encoder connectors that plug into the J1 Motor Interface Board.
12.	Remove the Battery connector that plugs into the J1 Motor Interface Board.
13.	Loosen the M4 SHCS screws attaching the Z bearing rail to the Z Extrusion.
14.	Slide the Z Rail and Z Carriage with the robot arm still attached partially out the top of the robot, far enough to expose the power supplies. It may be more convenient to slide the carriage and Z rail all the way out of the Z extrusion. Take care the bearing block does not slide off the Z rail. It may be helpful to wrap some tape around the rail to prevent this. If the bearing block slides off the rail, the bearing balls may be lost, damaging the bearing. Simultaneously slide the Electronic Chassis out of the Z Extrusion and lay both assemblies on the table.
15.	Unplug the cables from the failed power supply.
16.	Remove the (4) M3 X 8 mm SHCS and lock washers to replace the power supply or energy dump PCA. Be careful not to pull the J1 FFC encoder cable (white 14 mm wide flat cable) out of the FFC connector on the J1 Motor Interface PCA. If this cable is pulled out, carefully release the clamping lid on the FFC cable connector on the J1 Motor Interface PCA by inserting a small flat bladed screwdriver in the notch in the clamping lid and very gently prying the lid out of the connector. This lid is a cam-lock type of lid, which when inserted, clamps the flat white J1 encoder ribbon cable. Re-insert the J1 flat white encoder ribbon cable into this connector and carefully press the clamping lid back into the connector. If the J1 encoder cable is disconnected during this procedure, it will be necessary to re-calibrate the robot as the absolute encoder backup power will be interrupted to the J1 absolute encoder.
17.	Re-attach the power supply cables and re-assemble the robot. Ensure that the bearing rail reference edge is tightly pressed against the reference boss in the Z extrusion. The top of the bearing rail should be about 35 mm below the top of the extrusion and the bottom of the rail should clear the stage one Z timing belt on the large diameter pulley.

Replacing the Robot Controller

Tools Required:

- 2.5 mm hex driver or hex L wrench
- 2.0 mm hex driver or hex L wrench
- Small flat bladed screw driver, with 1.5 mm wide blade type
- M5 socket driver or M5 open end wrench or pliers

Spare Parts Required:

• Guidance G1400C Controller PN G1X0-EA-C1400-13

NOTE: Before replacing the controller, save copies of the robot PAC files and any project files to a PC, using a procedure similar to that described in "Loading a Project (Program) or Updating PAC Files."

Step	Action
1.	Turn off the robot power and remove the AC power cord.
2.	Remove the Inner Link Cover by removing the (4) M3 X 20 mm SHCS that attach the cover.
3.	Remove the upper circuit board by removing the (4) M2.5 X 6 mm screws.
4.	Unplug the cables from upper circuit board.
5.	Remove the lower circuit board by removing the (4) M2.5 X 16 mm standoffs with an M5 socket driver.
6.	Unplug the cables from the lower circuit board. Use a small flat bladed screwdriver to gently release the 3 zero-insertion-force (ZIF) flat flexible cable (FFC) connector compression lids.
7.	Check the jumpers on the replacement CPU board (top board) per the photo in <u>Step 13</u> .

To replace the Robot Controller, perform the following procedure:

Replacing the Robot Controller

Step	Action
8.	Re-attach the harness and replace the circuit boards. Refer to the schematics section above for connector labeling on the circuit boards. Be careful that the 2-pin plug from the brake release switch plugs into the lower board and the 2-pin plug on the pigtail from the lower board plugs into the upper board. Be careful to gently press in the compression latch on the FFC encoder connectors with your finger, not a sharp object.
9.	Make sure the Ethernet cable folds back along the under the upper circuit board but does not obstruct the board to board connector.
10.	Make sure no cables will be pinched by the Inner Link Cover and replace the Cover.
11.	After replacing the Robot Controller the robot must be re-calibrated. See "Calibrating the Robot: Setting the Encoder Zero Positions."
12.	After replacing the Robot Controller, install the PAC files on the controller.
13.	Move jumpers as shown below in 1 and 2.Image: Contract of the provided state

Brooks Automation Part Number: 628699 Rev. A

Replacing the Robot Controller

Step	Action
14.	<text></text>
15.	Controller installed in inner link.

Replacing the Linear Axis Controller

Tools Required:

- 2.5 mm hex driver or hex L wrench
- 2.0 mm hex driver

Spare Parts Required:

 G1100T Slave Controller ("GSB3-DIFF") see "Spare Parts List." Note this part has differential encoder inputs and is not the same part as the GSB3-SE for the gripper (See the *PreciseFlex Servo Gripper* user manual), which has single ended encoder inputs.

To replace the Linear Axis Controller, perform the following procedure:

Step	Action
1.	Remove the linear axis cover by sliding the carriage to one end of travel, remove the (4) M4 X 30 mm SHCS from the end caps retaining the cover. It may also be necessary to loosen the connector end cap by loosening the bottom (2) screws that attach the connector end cap to the Linear Axis Extrusion, so that the cover can be lifted up and removed.
2.	Remove the cable covers on the robot mount plate, and remove the robot mount plate.
3.	Replace the Linear Axis Controller Board. Ensure that all jumpers are set as shown below and that the battery wires are re-connected as shown. It will be necessary to recalibrate the robot if this board is replaced and the absolute encoder battery wires are disconnected.

Figure 2-2: Linear Axis Controller (GSB Revision 2)

Figure 2-3: Linear Axis Controller Rev2 (GSB Revision 3)

Replacing the GIO Board

The PreciseFlex 3400 robot has a GIO board integrated into the FFC board in its base with 8 inputs and 8 outputs as a standard feature.

A GIO board may also be installed in the Linear Axis extrusion for robots with the Linear Axis option. GIO boards communicate over the same RS485 network as the GSBs. Add them to the controller (network node parameter) in the same fashion.

NOTE: Do not access the IO at the base of the robot when moving on a linear rail.

This board is provided with a 150 mm pigtail harness to a 25-pin Dsub connector. The board is attached with (4) M3 X 10 mm SHCS and the 25-pin Dsub is attached with standard D-sub 4-40 mounting standoffs.

This board is typically installed at the factory, but can be installed in the field for robots shipped after July 2012 which have the appropriate mounting holes.

Tools Required:

- 3 mm hex driver or hex L wrench
- 2.5 mm hex driver
- M5 socket driver
- M5 open end wrench

Spare Parts Required:

• GIO Digital IO Board see "Spare Parts List"

To install the GIO Board in a robot with a Linear Axis, perform the following procedure:

Step	Action
1.	Slide the carriage of the Linear Axis to one end of travel.
2.	Remove the top cover from the Linear Axis by removing the (4) M4 X 30 mm SHCS from the end caps. It may be necessary to loosen the (2) bottom screws on the connector end cap to provide clearance to remove the cover.

Brooks Automation Part Number: 628699 Rev. A

Replacing the GIO Board

Step	Action
3.	Remove all (4) address jumpers on the GIO board J7-J10, as shown. Digital Outputs 1-8 Default Position is sinking. Moving both jumpers up 1 pin for sourcing Install J6 (RS485 Term) Remove J7, J8, J9. J10 J2: Digital/Analog Input 12 Connect Pins 1&2 for digital input J4: Digital Inputs 5-8 sourcing position J3: Digital Inputs 1-4 sourcing position
4.	Install the GIO Board in the linear axis using the (4) M3 X 10 mm SHCS and lockwashers.
5.	Remove the termination resistor from the 10-pin connector plug attached by (4) wires to the 9- pin Dsub Pendant connector and plug the 10-pin connector into the GIO board.
6.	Install the GIO output pigtail by plugging the 26-pin connector into to the GIO board and attaching the 25-pin Dsub connector to the end cap with the 4-40 standoffs provided. Make an accordion fold with the extra ribbon cable and tie wrap to hold the fold down over the GIO board.
7.	Replace the covers.
8.	Set value 8 in Data ID 151 to "GIO_8", so that this ID reads " <controller no="" serial="">", "GSB_1", "", "", "", "", "", "", GIO_8" This parameter may be found in Setup/Parameter Database/Controller/System ID.</controller>
9.	GIO signals may then be checked under Control Panels/Remote IO/Servo Node 8.

Replacing the Main Harness

Replacement of the Main Robot Harness is typically only performed at the factory. The Main Robot Harness is intended to last for the life of the robot.

Replacing the Outer Link Harness

The Outer Link Harness is composed of three cables: Harness, FFC, J4 Motor, (PF0H-MA-00002-02), Harness, FFC, J4 Encoder (PF0H-MA-00020-2), and Harness, Gripper Controller (PF0H-MA-00036). See the *PreciseFlex Servo Gripper* user manual.

Replacing the Outer Link Harness does not require unmounting the robot from its surface. To replace the Outer Link Harness, perform the following procedure:

Step	Action
1.	Remove the Inner Link Cover.
2.	Remove the Outer Link Cover.
3.	Unwind the Outer Link in counterclockwise direction, looking down from above the J3 axis until it reaches the hard stop.
4.	Release the J4 Motor Interface circuit board by removing the (2) M3 X 10 mm SHCS.
5.	Disconnect the Outer Link Harness from the J4 Motor Interface PCA and the Guidance 1100C Slave Controller in the Outer Link.
6.	Remove the upper circuit board in the Robot Controller by removing the (4) M2.5 X 6 mm screws and disconnect the harness.
7.	Remove the Harness Retaining Clip from the Robot Controller Mount Plate to release the controller end of the harness.

Replacing the Outer Link Harness

Step	Action
8.	Remove the (4) M2.5 X 16 mm standoffs attaching the lower circuit board in the Robot Controller. Gently tip the lower circuit board upwards and disconnect the motor and encoder cables from the lower circuit board.
9.	Release the Harness Retaining Clip from the J3 Output Pulley by loosening the M3 X 25 mm SHCS attaching the clip to the pulley. Pull the clip upwards and remove the M3 X 4 mm BHCS that clamps the harness to release the harness from the clip.
10.	Replicate the folds on the controller end of the replacement harness.

Replacing the Outer Link Harness

Step	Action
Step	<image/>
12.	Attach the Harness Retaining Clip near the Robot Controller to retain the Robot Controller end of the Harness.
13.	Coil the replacement harness into (3) loops.
14.	Fold the ends of the harness down at a right angle to replicate the replaced harness.

Brooks Automation Part Number: 628699 Rev. A

Replacing the Z-axis Motor Assembly

Step	Action
15.	Insert the connectors down thru the Elbow into the Outer Link.
16.	<image/>
17.	Attach the J3 Harness Retaining Clip to the J3 Output Pulley.
18.	Attach the connectors to the circuit boards in the Outer Link.
19.	Attach the J4 Motor Interface circuit board.
20.	Replace the covers.
21.	After replacing the harness the robot must be re-calibrated. See " <u>Calibrating the Robot: Setting the</u> <u>Encoder Zero Positions</u> ."

Replacing the Z-axis Motor Assembly

Tools Required:

- 5.0 mm hex driver or hex L wrench
- 4.0 mm hex driver or hex L wrench
- 3.0 mm hex driver or hex L wrench
- 2.5 mm hex driver or hex L wrench
- Loctite 243

Spare Parts Required:

• J1 Motor Assembly PN PF00-MA-00071

The J1 Motor Assembly is composed of the J1 motor, connectors and a timing belt pulley.

To replace the Z -axis motor assembly, perform the following procedure:

Step	Action
1.	Remove AC power and connectors from the base of the robot.
2.	Unfasten the robot from its mounting surface by removing the (4) M6 SHCS.
3.	Lay the robot on its back, being careful the robot links do not fall over and damage the paint. It is a good idea to wrap the links with a protective cover first, such as a sheet of foam.
4.	Remove the top cover by removing the (4) M5 Low Head Cap Screws.
5.	Remove the Front Cover by sliding it out.
6.	Remove the left splash guard by removing the M3 X 8 mm SHCS and M3 star washer.
7.	Remove the screws attaching the Electronics Chassis and ground lug to the Bottom Mounting Plate.

Replacing the Z-axis Motor Assembly

Step	Action
	Unplug the Battery from the J1 Motor Interface Board.
8.	J1 Encoder Connector J1 Motor Connector Battery Connector Splash Guard E Chassis Screw
9.	Remove the screw compressing the J1 Motor Tension Spring and spring.
10.	Remove the Base Mounting Plate by removing the (4) M5 SHCS. The right splash guard is attached to the base mounting plate.
11.	Remove the M4 Locking Screws that attach the J1 Motor Mount Bracket to the Z Column.
12.	Slide the J1 Stage 1 timing belt off the large idler pulley.
13.	Slide the J1 Motor and Motor Mount Bracket assembly out the bottom of the Z Column.
14.	Remove the J1 Motor Assembly from the J1 Motor Mount Bracket and replace with the new motor, using Loctite 243.
15.	Replace the components in reverse order.

Replacing the J2 (Shoulder) Axis Motor or Timing Belt

Part Number: 628699 Rev. A

Step	Action
16.	Compress the tension spring to 5.5 mm under the washer with the M4 Motor Bracket Locking screws slightly loose, then tighten the screws. Use Loctite 222 or 243 on the Base Plate and Top Plate screws.
17.	Before replacing the Front Cover and Top Plate, the Cal Pins should be removed from inside the Front Cover and the robot should be re-calibrated following the Calibration Procedure in " <u>Calibrating the Robot: Setting the Encoder Zero Positions</u> ."

Replacing the J2 (Shoulder) Axis Motor or Timing Belt

 DANGER

 Electrical Shock

 Before replacing the J2 Motor, the AC power should be removed.

Tools Required:

- 5.0 mm hex driver or hex L wrench
- 4.0 mm hex driver or hex L wrench
- 3.0 mm hex driver or hex L wrench
- 2.5 mm hex driver or hex L wrench
- 2.0 mm hex driver or hex L wrench
- Fine point tweezers
- 0.06 in flat blade screwdriver

Spare Parts Required:

- J2 Motor Assembly (PF02-MA-00020) or J2 Timing Belt (PF00-MC-X0005 or PF00-MC-X0099)
- 2 1/8th by 8 in tie wraps
- Loctite 243

The J2 Motor Assembly is composed of the J2 motor, connectors, and a timing belt pulley. To replace the J2 (shoulder) axis motor or timing belt, perform the following procedure:

Step	Action
1.	Unbolt the robot from its mounting surface and set it vertically on the floor or a low surface.
2.	Move the robot arm to about 2 inches below the top of the Z Column travel.

Replacing the J2 (Shoulder) Axis Motor or Timing Belt

Step	Action
3.	Turn off the robot power and remove the AC power cord.
4.	Remove the Top Plate of the robot by removing the (4) M5 socket head screws from the top plate of the robot that attach the top plate to the Z column.
5.	Remove the Front Cover by lifting it out horizontally.
6.	Remove the Z carriage inner cover by removing the (5) M3 X 10 mm FHCS. M5 Set Screw M4 Locking Screws M5 Shoulder Screw M5 Shoulder Screw Z Carriage Inner Cover Light Bar
7.	Remove the Light Bar by removing the (3) M3 X 8 mm SHCS and unplugging the connector from the J2 Motor Interface PCA.
8.	Remove the tie wrap securing the harness loop to the Z carriage.
9.	Remove the M2 and E2 Flat Ribbon Cables from the J2 motor interface board. The E2 connector Cam lid must be VERY gently pried open with a .06 in flat bladed screwdriver.
10.	Remove the J2 Motor Interface PCA by removing the (2) M3 X 8 mm SHCS. Cut the tie wrap securing the J2 motor cables to the Z Carriage. Unplug the J2 motor and encoder cable from the J2 Motor Interface PCA. J2 Motor Interface Board J2 Motor Interface Board Check Belt Tension on this segment of belt by plucking belt and measuring tension with tension meter.

Replacing the J2 (Shoulder) Axis Motor or Timing Belt

Step	Action
11.	Disconnect the harness retaining clip from the Z carriage, but do not remove the clips that attach the harness to the J2 pulley.
12.	Uncoil the harness. One end will remain connected to the E-Chain and the other end will be connected to the J2 Pulley.
13.	Remove the J2 Belt Cover by removing the (3) M3 X 10 mm FHCS, and pull it partially up the uncoiled harness to expose the J2 timing belt.
	Unsnap (3) or (4) of the E-Chain harness retaining segments, working up from the carriage, and fold the E-chain and harness back over the power supply side of the robot to get it out of the way.
	J2 Belt Cover.
14.	Tension Spring Clamping Shoulder Screw Clamping Screws
15.	Loosen the (3) M3 SHCS and (1) M4 shoulder screw that attach the J2 motor bracket.
16.	Measure and record the distance from the back of the Tension Spring to the carriage, then remove the M4 X 20 mm SHCD and washer that compress the Tension Spring.
17.	Pull the timing belt up over the idler cam follower closest to the large J2 pulley to release belt tension and provide enough slack to remove the motor.
18.	If it is necessary to replace the J2 timing belt, replace the belt and reassemble the robot. Otherwise, skip this step and continue on to <u>Step 19</u> .

Replacing the J2 (Shoulder) Axis Motor or Timing Belt

Step	Action
19.	Loosen the (4) screws and washers that attach the motor mount plate to the Z carriage while supporting the motor. It may be easiest to leave these screws in the carriage during this process.
20.	Drop the motor assembly downwards while threading the motor cables through the access hole in the bottom of the Z carriage, and pulling the timing belt up over the pulley flange.
21.	Remove the motor from the Motor Mount Bracket by removing the (4) M5 X 12 mm SHCS. Attach the new motor to the Motor Mount Bracket using Loctite 243.
22.	Re-install motor, threading cables through the Z carriage first, and pulling timing belt over pulley flange. Attach motor with (4) clamping screws. Do not tighten clamping screws all the way.
23.	Re-install the M4 X 20 mm Tension Bolt and compress the Tension Spring to the previous value. Tighten the M4 Jam nut to lock the bolt and Tension Spring. This will cause motor assembly to pivot on the shoulder screw and will apply tension to the timing belt. Before tightening the clamping screws, rotate the J2 output pulley back and forth to ensure that the timing belt is running true on the output pulley.
24.	Tighten the clamping screws. If a Tension Meter is available check the belt tension for a minimum tension of 150N. (See " <u>Appendix E: Belt Tensions, Gates Tension Meter</u> ".)
25.	Re-assemble the robot except for the front cover and top cover.
26.	Remove the Calibration Pins from the inside of the front cover extrusion and re-calibrate the robot following the Calibration Procedure in "Calibrating the Robot: Setting the Encoder Zero Positions."

Replacing the J3 (Elbow) Axis Motor or Timing Belt

 DANGER

 Electrical Shock

 Before replacing this motor, the AC power should be removed.

Tools Required:

- 3.0 mm hex driver or hex L wrench
- 2.5 mm hex driver or hex L wrench
- 2.0 mm hex driver or hex L wrench
- Fine point tweezers
- 0.06 in flat blade screwdriver

Spare Parts Required:

- J3 Motor Assembly (PF00-MA-00030) or J3 Timing Belt (PF00-MC-X0066)
- 2 1/8th by 8 in tie wraps
- Loctite 222 and 243

The J3 Motor Assembly is composed of the J3 motor, connectors, and a timing belt pulley. To replace the J3 (elbow) axis motor or timing belt, perform the following procedure:

Step	Action
1.	Unbolt the robot from its mounting surface and set it vertically on the floor or a low surface.
2.	Move the robot arm to about 2 inches below the top of the Z Column travel.
3.	Turn off the robot power and remove the AC power cord.
4.	Remove the Top Plate of the robot by removing the (4) M5 socket head screws from the top plate of the robot that attach the top plate to the Z column.
5.	Remove the Front Cover by lifting it out horizontally.

Replacing the J3 (Elbow) Axis Motor or Timing Belt

Step	Action
6.	Remove the Z carriage inner cover by removing the (5) M3 X 10 mm FHCS.
7.	Remove the Light Bar by removing the (3) M3 X 8 mm SHCS and unplugging the connector from the J2 Motor Interface PCA.
8.	Remove the controller from inner link.
9.	Detach the inner link from the Z carriage by removing the (6) M3 X 35 mm SHCS and lock washers.
10.	Remove round Pulley Mount Plate from the Inner Link by removing the (5) M3 FHCS.

Replacing the J3 (Elbow) Axis Motor or Timing Belt

Step	Action
11.	Remove the J3 Controller Mount Plate from the Inner link by removing the (4) M3 X 5 mm SHCS.
12.	Remove the J3 motor by removing the (2) M4 screws that attach the motor to the motor mount plate, and rotate the motor up and out of the motor mount plate. This procedure will preserve the belt tension and avoid having to use a tension meter to reset the belt tension, as it preserves the position of the motor mount plate.
13.	Replace the J3 motor, using Loctite 243, or optionally, replace the J3 timing belt if necessary. Since the motor mount plate has not been removed, the belt tension should not need to be adjusted.
14.	If a Belt Tension Meter is available, check the belt tension per " <u>Appendix E: Belt Tensions, Gates</u> <u>Tension Meter</u> ." Check the belt tension every 10 degrees of rotation of the J3 output pulley and set the belt tension at its lowest point to the minimum value in " <u>Appendix E: Belt Tensions, Gates</u> <u>Tension Meter</u> ."
15.	Replace the pulley mount plate using Loctite 222 and re-assemble the robot.
16.	Re-calibrate the robot.

Replacing the J4 (Wrist) Axis Motor or Timing Belt

Tools Required:

- 3.0 mm hex driver or hex L wrench
- 2.5 mm hex driver or hex L wrench
- 2.0 mm hex driver or hex L wrench
- · Fine point tweezers
- 0.06 in flat blade screwdriver

Spare Parts Required:

- J4 Motor Assembly (PF04-MA-00023) or J4 Timing Belt (PF00-MC-X0065)
- Loctite 222 and 243

The J4 Motor Assembly is composed of the J4 motor, connectors, and a timing belt pulley. To replace the J4 (Wrist) Axis Motor or Timing Belt, perform the following procedure:

Step	Action
1.	Move the robot arm to a convenient height on the Z column for removing the outer link.
2.	Turn off the robot power and remove the AC power cord.
3.	Remove the inner link cover by removing the (4) M3 X 20 mm SHCS and lock washers.
4.	Remove the outer link cover by removing (4) M3 X 20 mm SHCS and lock washers.

Replacing the J4 (Wrist) Axis Motor or Timing Belt

Step	Action
5.	Remove the J4 Motor Cover in the Elbow by removing the (2) M3 X 10 mm FHCS.
6.	Rotate the Outer Link clockwise (viewing from above) until it hits the hard stop. This will expand the harness coil and the link will be position as shown below, about 10 degrees from straight out.
7.	Remove the J4 Motor Interface Board in the Outer Link and unplug the cables.
8.	Remove the Outer Link by removing the (6) M3 X 35 mm SHCS in the J3 Output Pulley that attach the Outer Link.
9.	Remove the Gripper Controller by unplugging the Gripper harness and removing the (4) M3 X 8 mm SHCS. See the <i>PreciseFlex Servo Gripper</i> user manual.
10.	Remove the Outer Link Belt Cover by removing the (4) M3 X 10 mm SHCS. 6 ea M3 X 35 SHCS J4 Motor J4 Motor Interface PCA Gripper Controller Outer Link Belt Cover

Replacing the J4 (Wrist) Axis Motor or Timing Belt

Step	Action							
11.	nove the J4 motor by removing the (2) M4 screws attaching the motor to the motor mount plate, rotate the motor up and out of the motor mount plate. procedure will preserve the belt tension and avoid having to use a tension meter to reset the tension, as it preserves the position of the motor mount plate.							
12.	eplace the J4 motor, using Loctite 243, or optionally, replace the J4 timing belt if necessary. nce the motor mount plate has not been removed, the belt tension should not need to be adjusted.							
13.	If a Belt Tension Meter is available, check the belt tension per " <u>Appendix E: Belt Tensions, Gates</u> <u>Tension Meter</u> ." Check the belt tension every 10 degrees of rotation of the J4 output pulley and set the belt tension at its lowest point to the minimum value in " <u>Appendix E: Belt Tensions, Gates</u> <u>Tension Meter</u> ."							
14.	Replace the pulley mount plate using Loctite 222 and re-assemble the robot, with the outer link positioned as shown in <u>Step 10</u> so that the link is correctly oriented with respect to the hard stop.							
15.	Re-calibrate the robot.							

Replacing the J4 (Wrist) Axis Motor or Timing Belt

Appendix A: Product Specifications

Table 2-2: PreciseFlex 3400 Specifications

General Specification	Range					
Performance						
Payload	3 kg					
Max Speed at TCP	1500 mm/sec (horizontal) 500 mm/sec2 (vertical)					
Max Acceleration	2000 mm/sec2 with 1 kg payload					
Repeatability	±0.090 mm at tool flange center					
	Range of Motion					
Joint 1 (Z) Axis	400, 750, 1160 mm					
Joint 2	±93°					
Joint 3 (Elbow)	±168°					
Joint 4	+100° to +470° (±960° with servo gripper)					
Horizontal Reach	588 mm (666 mm with servo gripper)					
	Communications					
General	100 Mb Ethernet, TCP/IP EtherNet/IP (optional) RS232 Modbus/TCP RS232, at end-of-arm					
E-stop	Dual-channel E-stop					
Operator Interface	Web-based operator interface					
Digital I/O	12 inputs, 8 outputs at base of robot optically isolated, 24V @ 100ma 2 in, 4 out for end-of-arm-tooling Remote I/O available Facilities Power					
	Facilities					
Power	90 to 132 VAC and 180 to 264 VAC Auto selecting, 50-60 Hz 100-250 watts typical operation DC Power Option Available					
Pneumatics	Two 3.2 mm OD (1.7 mm ID) airlines provided for end-of-arm-tooling. 4.9 bar max (71 PSI)					
Operating Temp	0-50°C (32-122°F)					
Relative Humidity	90% non-condensing					
Controller Mounting	Embedded into robot base					
Air Lines	Two, 3.2 mm OD, 1.6 mm ID Max pressure 500 kba (75 PSI)					
Weight	One air line, 75 PSI maximum, provided at outer link and routed internally to fittings on the Facilities Panel if Pneumatic Option selected.					

Appendix A: Product Specifications

General Specification	Range
Operator Interface	Web based operator interface supports local or remote control via browser connected to embedded web server.
Programming Interface	Three methods available: DIO MotionBlocks (PLC), embedded Guidance Programming Language (standalone), PC controlled over Ethernet using TCP/IP.
Required Power	The PreciseFlex 400 power supplies have an input range of 100 to 240 VAC, +/- 10%, 50/60 Hz. 200 Watts typical 400 watts maximum
Weight	25 kg (400 mm Z-axis) 30 kg (750 mm Z-axis) 35 kg (1160 mm Z-axis)
	Software
Programming	Guidance Motion (web interface) Guidance Programming Language (GPL) TCP Command Server (TCS)
Enhanced Functions	Hand Guiding (standard) Horizontal Compensation Z-Height Detection
	Peripherals and Accessories
General	23 N Servo Gripper Dual 23 N Servo Gripper 60 N Servo Gripper Gripper Fingers Remote I/O (RIO)
Linear Rail	1.0, 1.5, and 2.0 M travel Speed up to 750 mm/sec Repeatability: ±0.05 mm
Vision	PreciseVision Gripper, 23 N PreciseVision Gripper, 60 N

Appendix B: Environmental Specifications

NOTE: PreciseFlex robots are powered by 24 VDC and 48 VDC low-voltage DC power supplies with built-in overcurrent protection. For this reason, the PreciseFlex robots do not have a Short-Circuit Current Rating (SCCR).

The PreciseFlex Robots must be installed in a clean, non-condensing environment with the following specifications:

General Specification	Range & Features
Ambient temperature	4° C to 40° C
Suitable use	Indoor use only
Storage and shipment temperature	-25° C to +55° C
Humidity range	10 to 55%, non-condensing, non-corrosive
Altitude	Up to 3000 m
Voltage, single phase	100-240 VAC +/- 10%, 50/60 Hz
Mains cord rating, min	18 AWG, 3 conductor, 5 Amps min
Pollution Degree	2
Approved Cleaning Agents	IPA, 70% Ethanol/30% water, H2O2 Vapor up to 1000 ppm
IP rating	11
IK impact rating	IK08: 5 Joule

Table 2-3: Environmental Specifications

Appendix C: Spare Parts List

NOTE: Email <u>support_preciseflex@brooksautomation.com</u> for help replacing spare parts.

Description	Part Number	Rev C PN
Absolute Encoder Battery Assembly	PF0H-MA-00057	
J1 Motor Assembly - 3KG, PF3400	PF00-MA-00071	
J1 Stage 1 Belt	PF00-MC-X0021	
J1 Stage 2 Belt 400 mm	PF00-MC-X0022	
J1 Stage 2 Belt 750 mm	PF00-MC-X0023	
	Note: 750mm on PO	
J1 Stage 2 Belt 1160 mm	PF00-MC-X0023	
	Note: 1,160mm on PO	
J2 400 W Motor Assembly 20 mm Pulley	PF02-MA-00020	
(PreciseFlex 3400)		
J2 Belt 9 mm wide (Dav D. C)	PF00-MC-X0005	
J2 Belt 12 mm wide (Rev B, C)	PF00-MC-X0081	
J2 Cam Followers for 9 mm belt (set of 2)	PF00-MA-00023	
J2 Cam Follower for 12 mm belt (set of 2) (Rev B)	PF00-MA-00024	
	PF00-MA-00030	
J3 Belt, Extended Reach	PF00-MC-X0066	
J4 50 W Motor Assembly (Precise Flex 3400)	PF04-MA-00023	
J4 Belt - LR 3 MM PTICH GT2, TRUMOTION, 232G	PF00-MC-X0065	
23 N Servo Gripper - without fingers	PF0S-MA-00001-1	
23 N Servo Gripper Fingers	PF0S-MA-00010	
60 N Servo Gripper	PF3S-MA-00001	
G1400C Controller with advanced kinematics license	G1X0-EA-C1400-13	
Guidance 1100T Slave (GSB) for Single Gripper	G1X0-EA-T1101-4	
Guidance 11001 Slave (GSB) for Dual Gripper/Rail	G1X0-EA-11101-4D	
24 VDC Supply	PS10-EP-24150	
48 VDC Motor Supply	PS10-EP-48500	
Slip Ring Harness Assembly, 23 N Dual Servo	397515	18Wire
Gripper		
Slip Ring Harness Assembly, 60 N Spring Gripper	PF04-MA-00030-E2	
Harness, FFC, J4 Motor	PF0H-MA-00002-02	
Harness, FFC, J4 Encoder	PF0H-MA-00020-2	
Harness, Gripper Controller	PF0H-MA-00036	
J1 Motor Interface PCA	PF00-EA-00031	
J2 Motor Interface PCA	PF00-EA-00030	
MIDS Interface PCA	PF00-EA-00032	Connector changed
J4 Motor Interface PCA	PF00-EA-00033	

Appendix D: Preventative Maintenance

Every one to two years, the following preventative maintenance procedures should be performed. For robots that are continuously moving 24 hours per day, 7 days a week at moderate to high speeds, a one-year schedule is recommended. For robots with low duty cycles and low to moderate speeds, these procedures should be performed at least once every two years.

Check List	Procedure If Problem Detected
Check all belt tensions	Re-tension if necessary
Check air harness tubing in	Replace if necessary
elbow if present, and theta	
axis for any wear	
Replace timing belt in	Typically every 6,000 hours of continuous operation
optional linear axis	
Check all joints in "free	If a bearing is getting stiff, return to factory for bearing replacement.
mode" for low bearing friction	
and any sticking.	
Check second stage (long) Z	If noisy, add thick grease to front and rear edge of belt if necessary. (Shell 222 XP
belt for any squeaking	or similar). Z timing belt can get stiffer over time (2-3 years) and occasionally start
	squeaking against pulley flanges.
Check if front cover is rattling	If so, check .125 in ID by .062 in thick O rings on dowel pins in base plate under
	front cover for any deterioration and replace if necessary.
Check Cam Followers on J2	Replace if necessary. Note that earlier units had a 9 mm wide timing belt and later
timing belt for grease leaking	units (2014, 2015) have a 12 mm wide timing and the Cam Followers are different.
or discoloration.	See "Appendix C: Spare Parts List."
Replace slip ring	For units with electric gripper shipped before April 2015, replace the slip ring. For units shipped after April 2015, replace the slip ring every third inspection test.

Table 2-4: Preventative Maintenance, Checklist & Procedures

Table 2-5: PreciseFlex 3400 PM Schedule by Revision Level & Date

Component	Expected Life	Action		
Revision A, Serial Numbers F0X				
Slip ring	1-3 years	Replace component		
Ethernet cable (flat black Startech)	2-4 years	Replace component		
J2 timing belt (9 mm)	2 years	Replace component		
Motors with pulleys (bonded)	2-10 years	Replace assembly if bond broken		
Harness (any FFC cables)	4-10 years	Replace robot*		
Revision B, Serial Numbers F0B				
Slip ring	3-5 years	Replace component		
Ethernet cable (flat black Startech)	2-4 years	Replace component		
Revision C, Serial Numbers F0C				
Slip ring	3-5 years	Replace component		
J2 timing belt	5 years heavy use	Replace component		
Ethernet cable (flat black Startech before Nov 2017)	2-4 years	Teflon replacement 10 years		

NOTE: *Because of EOL parts, this repair requires the replacement of a large amount of electronics and harnessing. Replacing the robot may be more cost effective.

Component	Expected Life	Action		
Revision A, Serial Numbers FXX				
Timing belt	6,000 hours/duty cycle*	Replace component		
E-chain harnessing	2-4 years	Replace all cables		
Ethernet cable	2-4 years	Replace component		
Tape seals	2-4 years	Replace component		
Tape seal rollers	2-4 years	Replace component		
Revision B Feb 2015, Serial Numbers FXB				
Timing belt	6,000 hours/duty cycle*	Replace component		
E-chain harnessing	20,000 hours	Replace all cables		
Ethernet cable before May 2017	2-4 years	Teflon replacement 10 years		

Table 2-6: Linear Axis PM Schedule

*For example, if rail operates at 50% duty cycle, expected life is 12,000 hours

Appendix E: Verification of PreciseFlex 3400 Collision Forces

Collision Force Table for PreciseFlex 3400

PAC Files	PreciseFle	ex 3400S									
170713											
		Config	uration		J1	J2	J3	J4	J5	Rail	XYZ
	10351				4000	12000	14000	9000	0	NA	
		10	352		-2600	-12000	-14000	-9000	0	0	
		Pe ak cum	ent, tonts		7077	27702	24279	14837	6356	22933	
	PIE	Error (103	352) % of pe	eak	37%	43%	58%	61%	100%	100%	
	Stand	dard Confi	g for crash	tests	50	-52	113	-61	102	-230	
	Config f	for J2 Rotat	tion (max v	elocity)	44	-1	66	-334	102	NA	
		100% Joi	nt Speed		500mm/s	90d eg/s	720deg/s	720deg/s	400mm/s	750mm/s	
	100% Joint Accel			1800	1100	1200	4000	10000	1000		
	100% XYZ Speed									500	
	100% XYZ Accel										2000
		PF400 Col	llisions at (Gripper, 50)mm progra	mmed int	erference			Z decel	eration %
Speed	Ma	anual Cont	rol	Free	Space Coll	ision	Rigid	Surface Co	llision	100%	40%
	X cart	Y cart	-Z1kg	X cart	Y cart	-Z 1.0kg	X cart	Ycart	J2 rot	-Z 1.0kg	-Z 1.0kg
100%	20	30	95	85	85	100	105	138	223	234	164
80%	21	29	90	64	82	100	89	114	149	195	139
60%	20	24	88	50	51	100	72	94	116	155	118
40%	19	21	81	34	28	96	50	70	87	121	104
20%	17	20	75	18	24	85	23	41	47	105	92
5%	16	12	72	18	23	93	16	22	19	80	77

Figure 2-4: Collision Force Table for PreciseFlex 3400

Appendix F: Belt Tensions, Gates Tension Meter

In some cases it may be desirable to confirm the belt tension of one of the axes in the robot. This is not normally required, as the robot has been designed with spring tensioners that only require loosening and then re-tightening some clamping screws to reset the belt tensions. However, in the case of the long Z column belts it is possible that after several years of operation, the belt may stretch enough that the tension spring pre-load screw may need to be adjusted. If it appears a belt tension is not being adjusted properly by the pre-load spring, the tension can be checked with a Gates Sonic Tension Meter, Model 507C or 508C (Figure 2-5).

Figure 2-5: Gates Sonic Tension Meter

To use the tension meter

- 1. Turn on the power.
- 2. Click the Mass button and enter the belt mass from the table below.
- 3. Click the Width button and enter the belt width from the table below.
- 4. Click the Span button and enter the belt free span from the table below.
- 5. Click Select" to record the data.
- 6. Click **Measure** to take a tension reading.
- 7. Place the microphone near the belt, typically within 3 mm or so. Gently pluck the belt so that it vibrates. The tension meter will calculate the belt tension from the acoustic vibrations and display the tension in Newtons. Compare the tension to the table below in Figure 2-6 (PreciseFlex 3400). Adjust the belt tension preload screws if necessary.

Belt	Mass (g/m)	Width (mm)	Span (mm)	Tension Min (N)	Tension Max (N)	Frequency Min Hz	Frequency Max Hz
Z S1	2.8	9	58	50	70	384	454
Z S2 PF3400	4.1	12	575	140	180	46	53
Z S2 PF3400	4.1	12	920	140	180	29	33
Z S2 PF3400	4.1	12	1340	140	180	20	23
J2 PF3400	2.8	20	108	250	350	309	366
J3 PF3400	2.8	12	113	90	120	229	264
J4 PF3400	2.8	9	146	65	80	174	193
Linear Axis	4.1	20	500	135	160	41	44

Figure 2-6: Belt Tension Values PreciseFlex 3400

Appendix G: Table A2 from ISO/TS 15066: 2016, Biomechanical Limits

Appendix G: Table A2 from ISO/TS 15066: 2016, Biomechanical Limits

			Quasi-sta	tic contact	Transient contact		
Body region		Specific body area	Maximum permissible pressure a ps N/cm ²	Maximum permissible force ^b N	Maximum permissible pressure multiplier ^c P _T	Maximum permissible force multi- plier ^c F _T	
Skull and fore- 1 head ^d 2		Middle of forehead	130	100	not applicable		
		Temple	110	130	not applicable	not applicable	
Face d	3	Masticatory muscle	110	65	not applicable	not applicable	
	4	Neck muscle	140	150	2	2	
Neck	5	Seventh neck muscle	210	150	2		
Back and shoul-	6	Shoulder joint	160		2	2	
ders 7		Fifth lumbar vertebra	210	210	2	2	
Chart	8	Sternum	120	140	2	2	
Cnest	9	Pectoral muscle	170		2	2	
Abdomen	10	Abdominal muscle	140	110	2	2	
Pelvis	11	Pelvic bone	210	180	2	2	
Upper arms and	12	Deltoid muscle	190	150	2		
elbow joints	13	Humerus	220	150	2	2	
	14	Radial bone	190		2		
Lower arms and	15	Forearm muscle	180	160	2	2	
WI ISC JOINTS	16 Arm nerve		180	180			

^a These biomechanical values are the result of the study conducted by the University of Mainz on pain onset levels. Although this research was performed using state-of-the-art testing techniques, the values shown here are the result of a single study in a subject area that has not been the basis of extensive research. There is anticipation that additional studies will be conducted in the future that could result in modification of these values. Testing was conducted using 100 healthy adult test subjects on 29 specific body areas, and for each of the body areas, pressure and force limits for quasistatic contact were established evaluating onset of pain thresholds. The maximum permissible pressure values shown here represent the 75th percentile of the range of recorded values for a specific body area. They are defined as the physical quantity corresponding to when pressures applied to the specific body area create a sensation corresponding to the onset of pain. Peak pressures are based on averages with a resolution size of 1 mm². The study results are based on a test apparatus using a flat (1.4 × 1.4) cm (metal) test surface with 2 mm radius on all four edges. There is a possibility that another test apparatus could yield different results. For more details of the study, see Reference [5].

^b The values for maximum permissible force have been derived from a study carried out by an independent organization (see Reference [6]), referring to 188 sources. These values refer only to the body regions, not to the more specific areas. The maximum permissible force is based on the lowest energy transfer criteria that could result in a minor injury, such as a bruise, equivalent to a severity of 1 on the Abbreviated Injury Scale (AIS) established by the Association for the Advancement of Automotive Medicine. Adherence to the limits will prevent the occurrence of skin or soft tissue penetrations that are accompanied by bloody wounds, fractures or other skeletal damage and to be below AIS 1. They will be replaced in future by values from a research more specific for collaborative robots.

The multiplier value for transient contact has been derived based on studies which show that transient limit values can be at least twice as great as quasi-static values for force and pressure. For study details, see References [2], [3], [4] and [7].
d Critical zone (*italicized*)

Figure 2-7: Biomechanical Limits, Page 1 of 2

Appendix G: Table A2 from ISO/TS 15066: 2016, Biomechanical Limits

2

			Quasi-stat	tic contact	Transient contact		
Body region		Specific body area	Maximum permissible pressure a ps N/cm ²	Maximum permissible force ^b N	Maximum permissible pressure multiplier ^c P _T	Maximum permissible force multi- plier c F _T	
	17	Forefinger pad D	300	0 0 0 0	2	3	
	18	Forefinger pad ND	270		2	2	
	19	Forefinger end joint D	280		2		
	20	Forefinger end joint ND	220		2		
Hands and fin-	21	Thenar eminence	200	140	2		
6010	22	Palm D	260		2		
	23	Palm ND	260		2		
	24	Back of the hand D	200		2		
	25	Back of the hand ND	190		2		
Thighs and knees	26	Thigh muscle	250	220	2	2	
	27	Kneecap	220	220	2		
Lowerlegs	28	Middle of shin	220	120	2	2	
	-	a 16 1	010	130	-		

These biomechanical values are the result of the study conducted by the University of Mainz on pain onset levels Although this research was performed using state-of-the-art testing techniques, the values shown here are the result of a single study in a subject area that has not been the basis of extensive research. There is anticipation that additional studies will be conducted in the future that could result in modification of these values. Testing was conducted using 100 healthy adult test subjects on 29 specific body areas, and for each of the body areas, pressure and force limits for quasi-static contact were established evaluating onset of pain thresholds. The maximum permissible pressure values shown here represent the 75th percentile of the range of recorded values for a specific body area. They are defined as the physical quantity corresponding to when pressures applied to the specific body area create a sensation corresponding to the onset of pain. Peak pressures are based on averages with a resolution size of 1 mm². The study results are based on a test apparatus using a flat (1,4 × 1,4) cm (metal) test surface with 2 mm radius on all four edges. There is a possibility that another test apparatus could yield different results. For more details of the study, see Reference [5].

210

The values for maximum permissible force have been derived from a study carried out by an independent organization (see Reference [6]), referring to 188 sources. These values refer only to the body regions, not to the more specific areas. The maximum permissible force is based on the lowest energy transfer criteria that could result in a minor injury, such as a bruise, equivalent to a severity of 1 on the Abbreviated Injury Scale (AIS) established by the Association for the Advancement of Automotive Medicine. Adherence to the limits will prevent the occurrence of skin or soft tissue penetrations that are accompanied by bloody wounds, fractures or other skeletal damage and to be below AIS 1. They will be replaced in future by values from a research more specific for collaborative robots.

The multiplier value for transient contact has been derived based on studies which show that transient limit values can be at least twice as great as quasi-static values for force and pressure. For study details, see References [2], [3], [4] and [7]. d

Critical zone (italicized)

Figure 2-8: Biomechanical Limits, Page 2 of 2

29 Calf muscle

Appendix H: Safety Circuits for PreciseFlex 3400 3 kg Payload

14-Jun-17				PF3	400				
Safety Circuit	Start up Test :	Redundant	Continuous Test	Diagnostic Coverage	MTTFdl, Years	Power Off On Failure	PL	Category Safety	Notes (PF3400t has redundant Estop and 48V power supply enable)
Estop	Yes	Yes	No	99%	100	Yes	d	3	Startup test forces Estop, checks 48V power disable, zero amp current
									Dual Estop circuits tums off amp enable and PWM
									Dual Estop circuits tumS off 48V power
									Stopping robot with hand turns off amp enable, PWM and 48V
Encoder Feedback	Yes	No	Yes	90%	58	Yes	d	3	Startup test checks encoder communication, prevents mtr power if fault
									Serial update at 8Khz w checksum, comm check, accel check
									Counter embedded in position word to confirm CPU read from EPGA
CPU Monitor	Yes	Yes	Yes	9996	100	Yes	d	3	Startup test forces CPU WD low, checks 48V power disabled
							-	-	Independent dual watchdog timers turn off amp enable, RWM and 48V
									Processor on safety hoard monitors main CPU. Disables 48V if failure
Position Envelope Error	Yes	Yes	Yes	90%	57	Yes	d	3	Startup test checks encoder communication, prevents mtr power if fault
									Serial update at 8Khz w checksum, comm check, accel check
									SW watchdog in servo loop tums off amp enable, PWM and 48V
									Counter embedded in position word to confirm CPU read from FPGA
Dowor amp Fault	Vac	Vac	Vac	0.09/	100	Vac	4	,	Startup test confirms tare current when 45% analysis
Poweramprault	res	res	res	3076	100	res		2	Startop test commis zero corrent when 46V enabled
									Excess current to ground or phase to phase triggers shutdown in 10 usec
									Saturated Piblicurent command triggers shutdown in .050 sec
									Shorted transistor just locks up brushless motor
Collab Force Limit	Yes	Yes	Yes	90%	SW	Yes	d	3	Tests 2, 3, 4 above test HW. Motor driven against brake to test SW current limit.
									Position envelope error triggers fault, turns off power at amp and 48V
									Current saturation triggers separate fault, turns off power at amp and 48V
									Monitor function with WD turns off power at amp and 48V
									Monitor and CPU WD tested at startup turning off 48V
									Assymetric current limits limit Z force even with gravity load
Velocity Restrict	Yes	Yes	Yes	99%	93	Yes	d	3	Startup test, sets flag to trigger this error, then resets
									Checks velocity limit in FPGA in addition to check in CPU servo software
									1. Cat 2 and Cat 3 require startup test before enabling motor power

Figure 2-9: Safety Circuits for PreciseFlex 3400 3 kg Payload, Checklist

Figure 2-10: PreciseFlex 3400 3 kg Safety Circuit

Appendix I: Robot Anatomy

Figure 2-11: PreciseFlex 3400 Anatomy – Joints

Figure 2-12: PreciseFlex 3400 Anatomy – Belt Drives

Figure 2-13: PreciseFlex 3400 Anatomy – Power

Figure 2-14: PreciseFlex 3400 Anatomy with a Rail

Figure 2-15: PreciseFlex 3400 Anatomy - without a Rail

Appendix J: System Diagram and Power Supplies

The robot has a 24 VDC and 48 VDC power supply located in the Z column. The power supplies have both over-current and over-voltage protection and are CSA, UL, and CE certified.

The robot controller and electric gripper are powered by the 24 VDC supply. The four main robot motors are powered by the 48 VDC supply. The 48 VDC supply is protected against over-voltage bus pump up by an energy dump circuit, which connects a 25-Watt dump resistor across the 48 VDC supply output when the voltage reaches 56 Volts and disconnects the dump resistor when the voltage drops to 52 Volts. This protects the power supply during high speed motor deceleration when the motor generates Back EMF voltage that adds to the power supply voltage.

DC power is routed from the power supplies to an interconnect board in the base of the Z column (Z Base Motor Interface Board). From this interconnect board, the power is routed in P1 and P2 flat ribbon cables. The P2 cable contains the 48 VDC motor power and is connected to the power amplifier board in the controller. The P1 cable contains the 24 VDC controller power and is routed to a second interconnect board (the MIDS Power Interface Board), which is mounted on the side wall inside the inner link of the robot. From this board, 24 VDC power is connected to the main robot controller.

Four digital input and four digital output signals from the main robot controller are also connected to the MIDS Power Interface Board through a ten-conductor ribbon cable. One digital input signal, DI3, is routed down to the base of the robot thru the P1 ribbon cable where it is connected to the green Phoenix Estop connector. This provides a digital input for safety interlock purposes. There is a jumper on the MIDS Power Board which jumps this signal to the P1 cable. This jumper must be installed for this connection to work.

The rest of the digital inputs and outputs are daisy chained to a second connector on the MIDS board for use if needed. Some of these signals are used when the pneumatic gripper option is installed.

The E-Stop circuit is also connected from the controller to MIDS Power Interface Board and down through the P1 cable to two E-Stop connectors: the green Phoenix connector (J24) and the 9 pin Dsub connector (J30). The E-Stop pins on these connectors are wired in series so that both connectors must have either a jumper or E-Stop switch installed that completes the E-Stop circuit.

The gripper controller is connected to the main controller through an RS-485 cable routed through the elbow along with the power and encoder cables for the J4 motor. The RS-485 cable also supplies power for the gripper controller. See the *PreciseFlex Servo Gripper* user manual.

The motors for the Z column, the shoulder, and the wrist all plug into an interconnect board that converts the signals from the motor cables to the flat ribbon cables. The motor for the elbow plugs directly into the controller amplifier board in the inner link.

The cable from the brake release button under the shoulder plugs into the amplifier board in the inner link. This button provides a ground return from the Z column brake to ground bypassing the

transistor that performs this function under computer power so that the brake can be released manually without motor power being enabled.

Figure 2-16 through Figure 2-29 show the schematics and diagrams.

Figure 2-16: System Overview, PreciseFlex 3400 with Linear Axis

Figure 2-17: SCH,PCB,PF-SFT W/TM4C & VLS & DIO

Figure 2-18: SFT Board, Part 1

Figure 2-19: SFT Board, Part 2

Figure 2-20: SFT Board, Part 3

Figure 2-21: SFT Board, Part 4

Figure 2-22: SFT Board with CPU

Figure 2-23: SFT board PCB

Figure 2-24: E-Stop Path

Figure 2-25: Controller Power Amplifier Connectors

Number	Connector					
1.	Motor 3 Cable					
2.	Motor 4 FFC					
3.	Brake Release Switch					
4.	Encoder 4 FFC					
5.	Encoder 3 Cable					
6.	Motor 2 FFC					
7.	Motor 1 FFC					
8.	Power 1 FFC					
9.	Encoder 2 FFC					
10.	Encoder 1 FFC					

Appendix J: System Diagram and Power Supplies

Part Number: 628699 Rev. A

Figure 2-26: Controller Board Connectors

Figure 2-27: Gripper & Linear Axis Controller Connectors

Figure 2-28: Assembly, Slip Ring Harness with Sensor

86

Figure 2-29: Assembly, Slip Ring Harness, 60 N Gripper

Figure 2-30: Assembly, Harness, Slip Ring, Dual and Single 23 N Gripper

Figure 2-31: Assembly, Slip Ring Harness, 60 N Gripper, PreciseFlex 400

Appendix K: Torque Values for Screws

	Iorqu	e Values ir	n Newton-N	/leters		_
	Zinc	SS	Zinc	SS	Zinc	SS
Screw Size M	SHCS	SHCS	BHCS	BHCS	FHCS	FHCS
1.6	0.18	0.15	0.00	0.00	0.00	0.00
2	0.37	0.31	0.00	0.00	0.00	0.00
2.5	0.77	0.64	0.00	0.00	0.00	0.00
3	1.34	1.12	0.56	0.51	0.83	0.75
4	3.16	2.63	1.31	1.17	1.53	1.38
5	6.48	5.40	2.66	2.39	3.11	2.79
6	10.96	9.14	4.50	4.05	5.40	4.86

Use these torque values for all screws and fasteners unless otherwise stated.

Copyright © 2024, Brooks Automation	
-------------------------------------	--