
Brooks Automation
Part Number: 609644 Rev. A

Guidance Programming Language
User Manual

Part Number 609644, Revision A

Copyright © 2024, Brooks Automation 1



Guidance Programming Language
Part Number: 609644 Rev. A

Brooks Automation

Information provided within this document is subject to change without notice, and although believed to be accurate,
Brooks Automation assumes no responsibility for any errors, omissions, or inaccuracies.

AcuLigner™, Advan Tag™, AutoTeach™, ATR™, AXM™, BiSymmetrik™, CenterSmart™, Crate to Operate™,
CrossingConnect™, DARTS™, Enerta™, e-RMA™, e-Spares™, e-Volution™, Falcon™, FIXLOAD™, FrogLeg™,
GuardianPro™, Independent Twin Linear Exchange™, InCooler™, InLigner™, Isoport™, ITLX™, Jet™, Jet Engine™,
LEAP™, LeapFrog™, LowProfile™, LPT™, M2 Nano™, Marathon 2, Marathon Express, PASIV™, Pathway™,
PowerPak™, PowerTools™, PuroMaxx™, QuadraFly™, Radius™, Radient™, Radient Express™, Reliance™,
Reliance ATR™, RetroEase™, SCARA™, SmartPM™, SMIF-INX™, SMIF-LPT™, SPOTLevel™, The New Pathway
to Productivity™, Time Optimized Trajectory™, Time Optimal Trajectory™, Time Optimized Path™, TopCooler™,
TopLigner™, VacuTran™, VersaPort™, WaferEngine™, LEAP™, Pathway™, GIO, GSB, Guidance 6600, Guidance
6430, Guidance 6420, Guidance 6410, Guidance 6000, Guidance 3400, Guidance 3300, Guidance 3200, Guidance
2600, Guidance 2400, Guidance 2300, Guidance 2200, Guidance 1400, Guidance 1300, Guidance 1200, Guidance
0200 Slave Amplifier, Guidance 0006, Guidance 0004, Guidance Controller, Guidance Development Environment,
GDE, Guidance Development Suite, GDS, Guidance Dispense, Guidance Input and Output Module, Guidance
Programming Language, GPL, Guidance Slave Board, Guidance System, Guidance System D4/D6, PreciseFlex™
300, PreciseFlex™ 400, PreciseFlex™ 3400, PreciseFlex™ 1300, PreciseFlex™ 1400, PreciseFlex™ DD4,
PreciseFlex™ DD6, PreciseFlex™ DDR, PreciseFlex™G5400, PreciseFlex™G5600, PreciseFlex™G6400,
PreciseFlex™G6410, PreciseFlex™G6420, PreciseFlex™G6430, PreciseFlex™G6600, PreciseFlex™GSBP
Slave Amp, PreciseFlex™ PFD0, PrecisePlace 100, PrecisePlace 0120, PrecisePlace 0130, PrecisePlace 0140,
PrecisePlace 1300, PrecisePlace 1400, PrecisePlace 2300, PrecisePlace 2400, PrecisePower 300, PrecisePower
500, PrecisePower 1000, PrecisePower 2000, PreciseVision, and RIO logos are trademarks of Brooks Automation.

Fusion®, Guardian®, MagnaTran®, Marathon®, Razor®, Spartan®, Vision®, Zaris®, and the Brooks and design
logo are registered U.S. trademarks of Brooks Automation.

All other trademarks are properties of their respective owners.

© 2024 Brooks Automation. All rights reserved. The information included in this manual is proprietary information of
Brooks Automation, and is provided for the use of Brooks customers only and cannot be used for distribution,
reproduction, or sale without the express written permission of Brooks Automation.

This technology is subject to United States export Administration Regulations and authorized to the destination
only; diversion contrary to U.S. law is prohibited.

Brooks Automation
15 Elizabeth Drive
Chelmsford, MA
01824-2400
Tel: +1 978-262-2400
Fax: +1 978-262-2500

Brooks Automation, PreciseFlex Collaborative Robots
201 Lindbergh Avenue
Livermore, CA
94551
Tel: +1-408-224-2838

2 Copyright © 2024, Brooks Automation



Brooks Automation
Part Number: 609644 Rev. A

Worldwide Headquarters
15 Elizabeth Drive
Chelmsford, MA 01824 U.S.A.

Brooks Automation,
PreciseFlex Collaborative Robots
201 Lindbergh Avenue
Livermore, CA 94551 U.S.A

Technical Support

Location Contact Website

North America
+1-800-447-5007 (Toll-Free)
+1-978-262-2900 (Local)
+1-408-224-2838 (PreciseFlexTM)

http://www.brooks.com/

Europe support_preciseflex@brooksautomation.com

Japan +81 120-255-390 (Toll Free)
+81 45-330-9005 (Local)

China +86 21-5131-7066

Taiwan +886 080-003-5556 (Toll Free)
+886 3-5525258 (Local)

Korea 1800-5116 (Toll Free)

Singapore +65 1-800-4-276657 (Toll Free)
+65 6309 0701 (Local)

General Emails

Division Email Address

Sales sales_preciseflex@brooksautomation.com

Technical Support support_preciseflex@brooksautomation.com

Technical Publications Technical.Publications@brooksautomation.com

Copyright © 2024, Brooks Automation 3

http://www.brooks.com/
mailto:support_preciseflex@brooksautomation.com
mailto:sales_preciseflex@brooksautomation.com
mailto:support_preciseflex@brooksautomation.com
mailto:Technical.Publications@brooksautomation.com


Guidance Programming Language
Part Number: 609644 Rev. A

Revision History

Revision ECO Date Actions Author

Rev A EC147330 August 4, 2023

Released manual at
Rev. A to follow
standard Brooks
technical publication
styles.

M. Ashenfelder

4 Copyright © 2024, Brooks Automation



Brooks Automation
Part Number: 609644 Rev. A

Table of Contents

1. Safety 1
Safety Setup 1
Authorized Personnel Only 1
Explanation of Hazards and Alerts 2

Safety Text 2
Safety Icons 2
Signal Words and Color 2
Alert Example 3

General Safety Considerations 4
Mechanical Hazards 6
Electrical Hazards 7
Ergonomic Hazards 8
Emergency Stop Circuit (E-Stop) 10
Recycling and Hazardous Materials 10

2. GPL Overview 11
3. Statement Structure 13
4. Data Type and Variables 14

Basic Data Types 14
Variable Declarations 16
Data Type Arrays 19
Scope of Names 21

5. Objects and Classes 22
Objects and Classes Overview 22
Objects, Fields, Properties and Methods 22
Classes of Objects 23
The Dot “.” Operator 23
Object Variables and the New Clause 24
Copying Object Variables and Values 25

Clone Method 26
Nothing 26

Objects as Procedure Arguments 26
ByVal 26
ByRef 27

User-Defined Classes 27
Class Variables 28
Class Procedures 28
Me Object 30
Constructors 30

Limitations 31
6. Arithmetic Operations 32

Arithmetic Expressions 32
Arithmetic Functions and Methods 34

Copyright © 2024, Brooks Automation 5



Guidance Programming Language
Part Number: 609644 Rev. A

7. Strings and String Expressions 36
Strings and String Expressions Overview 36

8. Assignment Statements 39
Assignment Statements Overview 39

9. Control Structures 41
Control Structures Overview 41

GoTo Statements 41
If…Then…Else…End If Statements 41
For…Next Statements 42
While…EndWhile Statements 43
Do…Loop Statements 43
Select…Case…End Select Statements 43
Nested Control Structures 44

10. Procedures, Delegates and Modules 45
Subroutines and Functions 45

Calling a Procedure 45
Returning from a Procedure 46
Procedure Arguments 46
Not Supported 47

Delegates 47
Delegate Statement 48
Creating Delegate Objects 48
AddressOf Operator 49
AddressOf vs. String 49

Modules 50
Scope of Items within Modules 50
Special Initialization Procedures 50

11. Exception Handling 51
Exception Handling Overview 51
Try...Catch...Finally...End Try Statements 51
Throw Statement 53
Exception Class and Objects 53

12. Motion- and Controller-Related Classes 55
Motion- and Controller-Related Classes Overview 55
Signal Class 56
Location Class and Objects 57
Profile Class and Objects 61
Move Class 62
RefFrame Class and Objects 63
Controller Class 67
Robot Class 69
Latch Class 70

13. Networking Communications 72
Networking Communications Overview 72
Networking Definitions and Classes 72

6 Copyright © 2024, Brooks Automation



Brooks Automation
Part Number: 609644 Rev. A

TCP Server 75
TCP Server Example 76

TCP Client 77
TCP Client Example 77

UDP Server and Client 78
UDP Client Example - Read File using TFTP 78
UDP Client Example - Write File using TFTP 80

14. MODBUS/TCP Communications 83
MODBUS/TCP Communications Overview 83
Modbus Class 84
Modbus Master Connection 85
Modbus Master Examples 85

15. File I/O, Serial I/O, and Streams 87
File I/O, Serial I/O and Streams Overview 87
Classes and Methods 88
File I/O 90

Steps for Writing a File 92
Steps for Reading a File 92

92
File I/O Example 92

Serial I/O 93
Steps for Communicating Using a Serial Port 94
Serial I/O Example 94

Console Output 95
Example 95

Non-Volatile Memory (NVRAM) 96
/NVRAM Files 96
Automatically Logging Error Messages to the NVRAM 98
Non-Volatile Integer Data 99

Flash Sub-Partitions 99
Flash Corruption 99
Sub-Partitions 100
Creating Sub-Partitions 100

16. Vision Guidance 102
Vision Guidance Overview 102
Classes and Methods 103
Vision Interface 105
Vision Procedure Example 106

17. Managing and Executing GPL Projects 108
Projects and Files 108
Modules 108
Executing a Project 109

18. Thread Control 110
Thread Control Overview 110
Thread Synchronization 110

Copyright © 2024, Brooks Automation 7



Guidance Programming Language
Part Number: 609644 Rev. A

Thread Scheduling 111
The Thread Class 112
Thread-Safe Data Access in GPL 113

Thread-Safe Data Types in GPL 113
Creating Thread-Safe Interlocks 114

19. XML Data Exchange 116
XML Data Exchange Overview 116
Document Object Model (DOM) 117
Character Representation 118
XmlDoc Class 118
XmlNode Class 119
Examples 121

Reading an XML file 121
Writing an XML file 121
Accessing data in an XML document tree 122
Searching for an element in the document 122
Creating an XML document from a GPL program 123

Error Handling 123
20. Misc. Unsupported Features 125

8 Copyright © 2024, Brooks Automation



Brooks Automation 1. Safety
Part Number: 609644 Rev. A Safety Setup

1. Safety

Safety Setup

Brooks uses caution, warning, and danger labels to convey critical information required for the safe
and proper operation of the hardware and software. Read and comply with all labels to prevent
personal injury and damage to the equipment.

               Read the Safety Chapter

Failure to review the Safety chapter and follow the safety warnings can result in serious
injury or death.
l All personnel involved with the operation or maintenance of this product must read

and understand the information in this safety chapter.

l Follow all applicable safety codes of the facility as well as national and
international safety codes.

l Know the facility safety procedures, safety equipment, and contact information.

l Read and understand each procedure before performing it.

Authorized Personnel Only

This product is intended for use by trained and experienced personnel. Operators must comply with
applicable organizational operating procedures, industry standards, and all local, regional, national,
and international laws and regulations.

Copyright © 2024, Brooks Automation 1



1. Safety Guidance Programming Language
Explanation of Hazards and Alerts Part Number: 609644 Rev. A

Explanation of Hazards and Alerts

This manual and this product use industry standard hazard alerts to notify the user of personal or
equipment safety hazards. Hazard alerts contain safety text, icons, signal words, and colors.

Safety Text

Hazard alert text follows a standard, fixed-order, three-part format.

l Identify the hazard

l State the consequences if the hazard is not avoided

l State how to avoid the hazard.

Safety Icons
l Hazard alerts contain safety icons that graphically identify the hazard.

l The safety icons in this manual conform to ISO 3864 and ANSI Z535 standards.

Signal Words and Color

Signal words inform of the level of hazard.

Danger indicates a hazardous situation which, if not avoided,will result
in serious injury or death.

The Danger signal word is white on a red background with an
exclamation point inside a yellow triangle with black border.

Warning indicates a hazardous situation which, if not avoided, could
result in serious injury or death.

The Warning signal word is black on an orange background with an
exclamation point inside a yellow triangle with black border.

Caution indicates a hazardous situation or unsafe practice which, if not
avoided,may result in minor or moderate personal injury.

The Caution signal word is black on a yellow background with an
exclamation point inside a yellow triangle with black border.

Notice indicates a situation or unsafe practice which, if not avoided,may
result in equipment damage.

The Notice signal word is white on blue background with no icon.

2 Copyright © 2024, Brooks Automation



Brooks Automation 1. Safety
Part Number: 609644 Rev. A Explanation of Hazards and Alerts

Alert Example

The following is an example of a Warning hazard alert.

Number Description

1. How to Avoid the Hazard

2. Source of Hazard and Severity

3. General Alert Icon

4. Signal Word

5. Type of Hazard

6. Hazard Symbol(s)

Copyright © 2024, Brooks Automation 3



1. Safety Guidance Programming Language
General Safety Considerations Part Number: 609644 Rev. A

General Safety Considerations

               Software

Software is not safety rated. Unplanned motion can occur as long as power is
supplied to the motors. Maximum torque could be momentarily applied that may
cause equipment damage or personal injury.
l Only operate the robot with its covers installed.

l Guarantee that safety controller features are in place (for example, an
emergency stop button and protective stop).

l Regularly test safety components to prove that they function correctly.

               Robot Mounting

Before applying power, the robot must be mounted on a rigid test stand, secure
surface, or system application. Improperly mounted robots can cause
excessive vibration and uncontrolled movement that may cause equipment
damage or personal injury.
l Always mount the robot on a secure test stand, surface, or system before

applying power.

               Do Not Use Unauthorized Parts

Using parts with different inertial properties with the same robot application can
cause the robot’s performance to decrease and potentially cause unplanned
robot motion that could result in serious personal injury.
l Do not use unauthorized parts.

l Confirm that the correct robot application is being used.

4 Copyright © 2024, Brooks Automation



Brooks Automation 1. Safety
Part Number: 609644 Rev. A General Safety Considerations

               Magnetic Field Hazard

This product contains magnetic motors that can be hazardous to implanted
medical devices, such as pacemakers, and cause personal harm, severe injury,
or death.
l Maintain a safe working distance of 30 cm from the motor when with an

energized robot if you use a cardiac rhythmmanagement device.

            Unauthorized Service

Personal injury or damage to equipment may result if this product is operated or
serviced by untrained or unauthorized personnel.
l Only qualified personnel who have received certified training and have the proper

job qualifications are allowed to transport, assemble, operate, or maintain the
product.

             Damaged Components

The use of this product when components or cables appear to be damaged may cause
equipment malfunction or personal injury.
l Do not use this product if components or cables appear to be damaged.

l Place the product in a location where it will not get damaged.

l Route cables and tubing so that they do not become damaged and do not present
a personal safety hazard.

             Inappropriate Use

Use of this product in a manner or for purposes other than for what it is intended may
cause equipment damage or personal injury.
l Only use the product for its intended application.

l Do not modify this product beyond its original design.

l Always operate this product with the covers in place.

Copyright © 2024, Brooks Automation 5



1. Safety Guidance Programming Language
Mechanical Hazards Part Number: 609644 Rev. A

             Seismic Restraint

The use of this product in an earthquake-prone environment may cause equipment
damage or personal injury.
l The user is responsible for determining whether the product is used in an

earthquake prone environment and installing the appropriate seismic restraints in
accordance with local regulations.

Mechanical Hazards

             Pinch Point

Moving parts of the product may cause squeezing or compression of fingers or hands
resulting in personal injury.
l Do not operate the product without the protective covers in place.

                Automatic Movement

Whenever power is applied to the product, there is the potential for automatic or
unplanned movement of the product or its components, which could result in personal
injury.
l Follow safe practices for working with energized products per the facility

requirements.

l Do not rely on the system software or process technology to prevent unexpected
product motion.

l Do not operate the product without its protective covers in place.

l While the collaborative robotics system is designed to be safe around personnel,
gravity and other factors may present hazards and should be considered.

6 Copyright © 2024, Brooks Automation



Brooks Automation 1. Safety
Part Number: 609644 Rev. A Electrical Hazards

             Vibration Hazard

As with any servo-based device, the robot can enter a vibratory state resulting in
mechanical and audible hazards. Vibration indicates a serious problem. Immediately
remove power.
l Before energizing, ensure the robot is bolted to a rigid metal chamber or stand.

Electrical Hazards

Refer to the specifications of theGuidance Controller Quick Start Guide for the electrical power.

               Electrical Shock Hazard

Contact with electrical power can cause personal harm and serious injury.
l To avoid electrical shock, disconnect the power before troubleshooting the

electrical components.

l Check the unit's specifications for the actual system power requirements and use
appropriate precautions.

l Never operate this product without its protection covers on.

               Electrical Burn

Improper electrical connection or connection to an improper electrical supply can result
in electrical burns resulting in equipment damage, serious injury, or death.

l Always provide the robot with the proper power supply connectors and ground that
are compliant with appropriate electrical codes.

Copyright © 2024, Brooks Automation 7



1. Safety Guidance Programming Language
Ergonomic Hazards Part Number: 609644 Rev. A

               Electrical Fire Hazard

All energized electrical equipment poses the risk of fire, which may result in severe injury
or death. Fires in wiring, fuse boxes, energized electrical equipment, computers, and
other electrical sources require a Class C extinguisher.
l Use a fire extinguisher designed for electrical fires (Class C in the US and Class E

in Asia).

l It is the facility's responsibility to determine if any other fire extinguishers are
needed for the system that the robot is in.

Improper handling of the power source or connecting devices may cause component damage or equipment fire.
l Connect the system to an appropriate electrical supply.

l Turn off the power before servicing the unit.

l Turn off the power before disconnecting the cables.

Ergonomic Hazards

             Heavy Lift Hazard

Failure to take the proper precautions before moving the robot could result in back injury
and muscle strain.
l Use a lifting device and cart rated for the weight of the drive or arm.

l Only persons certified in operating the lifting device should be moving the product.

             Tipover Hazard

This product has a high center of gravity which may cause the product to tip over and
cause serious injury.
l Always properly restrain the product when moving it.

l Never operate the robot unless it is rigidly mounted.

8 Copyright © 2024, Brooks Automation



Brooks Automation 1. Safety
Part Number: 609644 Rev. A Ergonomic Hazards

             Trip Hazard

Cables for power and communication and facilities create trip hazards which may cause
serious injury.
l Always route the cables where they are not in the way of traffic.

Copyright © 2024, Brooks Automation 9



1. Safety Guidance Programming Language
Emergency Stop Circuit (E-Stop) Part Number: 609644 Rev. A

Emergency Stop Circuit (E-Stop)

The integrator of the robot must provide an emergency stop switch.

               Emergency Stop Circuit

Using this product without an emergency stop circuit may cause personal injury.

l Customer is responsible for integrating an emergency stop circuit into their
system.

l Do not override or bypass the emergency stop circuit.

Recycling and Hazardous Materials

Brooks Automation complies with the EU Directive 2002/96/EUWaste Electrical and Electronic
Equipment (WEEE).

The end user must responsibly dispose of the product and its components when disposal is
required. The initial cost of the equipment does not include cost for disposal. For further information
and assistance in disposal, please email Brooks Automation Technical Support at support_
preciseflex@brooksautomation.com.

10 Copyright © 2024, Brooks Automation

mailto:support_preciseflex@brooksautomation.com
mailto:support_preciseflex@brooksautomation.com


Brooks Automation 2. GPL Overview
Part Number: 609644 Rev. A

2. GPL Overview

This document introduces you to the Guidance Programming Language, GPL. GPL is a full-
featured language designed to allow you to program and automatically operate motion controllers
with machine vision and the mechanical mechanisms (“robots”) that are controlled by these
devices.

GPL can be employed in a wide variety of applications including: general robotics; mechanical
assembly; material handling and packaging; palletizing; carton loading or case packing; wafer
handling or machine control in the semiconductor industry; life sciences equipment applications; or
applications requiring conveyor tracking and/or vision guidance.

This language can be easily applied to a wide range of mechanisms ranging from simple, single axis
linear and rotary devices, to complex robots that require all of their axes to be simultaneously
moved in a coordinated Cartesian fashion, to systems that have multiple robots that operate either
independently or cooperatively. The control hardware for such systems can reside in a single box or
can be distributed in a networked control architecture. Independent of the physical control
architecture, GPL makes use of its built-in networking ability and knowledge of robot geometries
(kinematics) to allow mechanisms to be centrally programmed and easily controlled in Cartesian
coordinates.

To support such a wide range of applications and mechanisms, GPL has extensive motion control
facilities including: blending of joint and Cartesian interpolated motions (“continuous path”); s-curve
profiles; base and tool offsets; built-in kinematic models for a variety of robots; mathematics for
manipulating robot and part positions and orientations; and frames of reference including moving
frames of references for conveyor tracking.

GPL has been targeted to execute on the Precise Guidance Controller, which supports a networked
control architecture. This controller includes a web based operator interface, a unified configuration
and parameter database, integrated data logging capabilities, Category 3 (CAT-3) safety circuitry,
and a number of facilities that simplify both local and remote diagnostics and maintenance.

The Guidance Controller can in fact be programmed using three different methods: (1) a forms
based teach-and-repeat technique that executes “MotionBlocks” in response to digital input signals;
(2) GPL as described in this document; or (3) by any standard Windows PC language, which
remotely controls the system via a TCP/IP connection. The MotionBlocks method is ideal for simple
applications, especially those where a PLC is providing overall cell control, and is extremely easy-
to-use since no programming language knowledge is required. GPL has the advantage of being
embedded within the controller and allows more complex applications to be addressed while still

Copyright © 2024, Brooks Automation 11



2. GPL Overview Guidance Programming Language
Part Number: 609644 Rev. A

permitting the controller to be operated in a standalone mode. The TCP/IP method allows
programmers to leverage the capabilities of a PC (or other standard computing platforms) at
runtime and to utilize the language of their choice.

In this document, we describe the features and syntax for the embedded system, the “Guidance
Programming Language” (GPL).

GPL is a full-featured programming language. The fundamental syntax for GPL has been modeled
after object-oriented forms of the Basic Language in order to provide a syntax and development
environment that are familiar to many application developers. The Basic syntax has been
extensively augmented with “classes” and “objects” that implement the motion control and vision
capabilities. A Windows PC is required to develop and debug application programs but need not be
connected when the controller is operating in automatic mode. Programmers who are familiar with
Visual Basic .Net 2003 should be very comfortable with many of the computational and structural
elements of GPL.

In the following sections, an introduction and overview of the GPL syntax is provided. Where it is
important, we point out differences between GPL and the various variants of the Basic Language.
These notes are highlighted by enclosing them within square brackets (“[]”). For more detailed
information on individual instructions, objects and classes, methods, and properties, please see the
GPL Dictionary document.

12 Copyright © 2024, Brooks Automation



Brooks Automation 3. Statement Structure
Part Number: 609644 Rev. A

3. Statement Structure

Program lines can begin with an optional line label.  Line labels must either be a valid variable name
(e.g. label1) or an integer literal (e.g. 100).  Line labels must always be followed by a colon (:).   The
label and colon can optionally be followed by a standard statement.   [In VB6 and some other
version of Basic, no label separation character was required.]

The standard line is formatted as follows:

Label:      Statement         ' Comment

An apostrophe (') marks the beginning of a comment.  Comments can follow a standard statement
on a line.  Full line comments and blank lines are permitted.

Lines that begin with a # character are ignored.  This is useful for defining "#Region" and "#End
Region" lines that mark blocks of code that can be expanded or collapsed using the outlining feature
of an editor.

Only one statement is permitted per line but a single statement can be continued on multiple lines. 
To continue a line, the end of the line must contain a space character followed by an under bar (“ _”). 
Comment lines cannot be continued and lines cannot be broken at certain points (e.g. in the middle
of a variable name).

There is no termination character at the end of a statement.

Copyright © 2024, Brooks Automation 13



4. Data Type and Variables Guidance Programming Language
Basic Data Types Part Number: 609644 Rev. A

4. Data Type and Variables

Basic Data Types

Table 4-1 describes the basic data types that are supported in GPL:

Supported Data Types

Boolean True (<>0) or False (=0) values.

Byte Unsigned 8-bit integer numbers ranging from 0 to 255 in value.

Short Signed 16-bit integer numbers.

Integer Signed 32-bit integer numbers.

Single 32 bit single precision floating point numbers.

Double 64 bit double precision floating point numbers.

String String variables can have values that are of arbitrary length

Object

Universal data types for object oriented Basic.  Internally, this is a pointer to any type of data or
group of data.  The group of data can consist of a mix of data type values.  All built-in system
structures/classes are represented as objects.  See a later section for a general description of
Objects.

Table 4-1: Basic Data Types Supported in GP

The following data types (Table 4-2) found in VB.Net and VB6 are not supported:

Unsupported VB6/VB.Net Data Types
Long or Int64 64-bit signed integer number
Decimal 96-bit signed integer scaled by a power of 10
Int16 Synonym for Short

Table 4-2: Unsupported Data Types

14 Copyright © 2024, Brooks Automation



Brooks Automation 4. Data Type and Variables
Part Number: 609644 Rev. A Basic Data Types

Unsupported VB6/VB.Net Data Types
Int32 Synonym for Integer
Char 16-bit Unicode
Variant Old universal data type in VB6
Date Date and time values

Identifier type characters and literal type characters, which are special postfix characters used to
specify the type of variables and literal constants, are not supported.  For example, in other
systems, 725L identifies 725 as a Long constant and “Dim Abc!” declares Abc to be of type Single.

In general, the system automatically converts one type of variable to another as needed.  For
example, all integer types (Boolean, Byte, Short, Integer) are automatically converted to double
precision floating point values when used in floating point expressions.  However, when necessary,
the following explicit conversion functions (Table 4-3) can be utilized to force a specific type
conversion.  These functions are all described in greater detail in the Software Reference Section.

Explicit Type Conversion Functions
CBool Converts any numeric type or String to Boolean.
CByte Converts any numeric type or String to Byte.
CDbl Converts any numeric type or String to Double.
CInt Converts any numeric type or String to Integer.
CShort Converts any numeric type or String to Short.
CSng Converts any numeric type or String to Single.
CStr Converts any numeric type to String.
Hex Converts an Integer value to String in Hexadecimal format.

Table 4-3: Explicit Conversion Functions for Forcing a Conversion

All input characters are represented as 7-bit ASCII.  Extended 8-bit ASCII and Unicode characters
are not accepted in symbol names or in string literals.

Hexadecimal constant values are indicated by the prefix “&H”.  This syntax can cause confusion
with the “&” concatenation operator.  For example, if you have a variable named “HEAD” then the
expression: String &HEAD causes a syntax error since &HEAD is interpreted as the hex value
“EAD”.  To avoid this problem, insert a space after “&” if it is being used as a concatenation
operator.

Copyright © 2024, Brooks Automation 15



4. Data Type and Variables Guidance Programming Language
Variable Declarations Part Number: 609644 Rev. A

Octal constant values are indicated by the prefix “&O”.  This syntax can causes confusion with the
“&” concatenation operator.  For example, if you have a variable named “O2” then the expression:
String &O2 causes a syntax error since &O2 is interpreted as the octal value “2”.  To avoid this
problem, insert a space after “&” if it is being used as a concatenation operator.

As a programming convenience, there are a number of constant values that are predefined in the
language.  These constants all begin with "GPL_".  These constants are listed inTable 4-4, and their
use is described in the PreciseFlex Library language dictionary pages.

GPL Constant Values
GPL_CR ASCII carriage return character (13).
GPL_LF ASCII line feed character (10).
GPL_Righty Assert right shouldered configuration (&H01).
GPL_Lefty Assert left shouldered configuration (&H02).
GPL_Above Assert elbow above wrist configuration (&H04).
GPL_Below Assert elbow below wrist configuration (&H08).
GPL_Flip Assert wrist pitched up configuration (&H10).
GPL_NoFlip Assert wrist pitched down configuration (&H20).
GPL_Single Assert restrict wrist position to within +/- 180 degrees (&H1000).

Table 4-4: Constant Values

Variable Declarations

Variable names can be mixed case (upper and lower case characters), but names are not case
sensitive, i.e. Abc, ABC, abc, aBC all refer to the same variable. 

Within a given context, variable names must be unique even if they refer to variables of different
data types and variable names cannot match system keywords.  For example, you cannot have a
string variable named “value1” and an integer variable with the same name.  System keywords
generally refer to words such as “For”, “If”, “Dim” that are expected to denote a built-in language
capability.

Variable names must start with either a letter or an underscore “_”.  This character can be followed
by a sequence of up to 127 additional letters, numbers, and underscore characters for a total of 128. 
If a variable name starts with “_” it must be followed by at least one other character other than
another underscore to distinguish it from a line-continuation.

Dim is the basic data type declaration statement within procedures for local, i.e. automatic,
variables.  If Static is used in place of Dim within a procedure, the value of the variable is preserved
from one execution of the procedure to the next. Dim variables, including array variables, are

16 Copyright © 2024, Brooks Automation

https://www2.brooksautomation.com/#Controller_Software/Software_Reference/GPL_Dictionary/intro.htm


Brooks Automation 4. Data Type and Variables
Part Number: 609644 Rev. A Variable Declarations

initialized to 0 (numbers), False (Booleans), or Nothing (structures, objects, or classes), each time
their enclosing procedure is executed.

Dim ii As Short
Static jj As Short

Variables defined within a module, outside of a procedure, are accessible by all procedures in the
module and, like Static variables, their values are preserved independently of the execution of any
procedure. If such variables are defined with Private or Dim, the variables are local to the module
and cannot be accessed by procedures in other modules. If Public is used instead to declare a
variable, the variable is accessible by all procedures within all modules loaded into the controller’s
memory.

Module Test
Dim Count As Integer ' Invisible to other modules,

' global in this module
Private nBlocks As Integer ' Same as declaration above
Public TotalArea As Single ' Visible to all procedures in

' all modules within project.
End Module

Variables declared within a module can also be accessed by preceding the variable name with the
module name. This method of specifying a variable is required for cases when the same Public
variable name is found in more than one module and it is unclear from the name alone which
variable is being referenced.

Module Test1
Public aa As Integer
Public bb As Integer

End Module

Module Test2
Public aa As Integer

End Module

Module Test3
Sub MyProc

Dim ii As Integer
ii = bb ' Okay since there is only bb
ii = Test1.bb ' Okay but not necessary
ii = aa ' Error since aa is duplicated
ii = Test1.aa ' Okay since it is clear which aa

End Sub
End Module

In GPL, no matter where a variable is declared in a procedure, the scope of a variable extends
throughout the procedure with the restriction that variables can only be declared in the outermost
level of a procedure.

Copyright © 2024, Brooks Automation 17



4. Data Type and Variables Guidance Programming Language
Variable Declarations Part Number: 609644 Rev. A

For ii = 1 To 10
Dim jj As Integer ' Not allowed
kk = ii ' Forward reference to kk is allowed.

Next ii

Dim kk As Integer

In the future, we may change the scoping rules to follow other variants of Basic, such as VB.NET,
more closely.

Multiple declaration clauses may appear in a single statement.

Dim n As Integer, x As Double

The data type must always be specified.

Dim BlackObject1 ' Invalid

If multiple variables are declared within a single statement and a variable’s type is not specified, its
type is defined by the next type definition in the statement [this is different from VB6 where all
untyped variables became Variants].  Note, if a New clause (see below) is used, only a single
variable name may appear to the left of the As keyword.

Dim ii, jj As Integer' Both ii and jj are of type Integer

Variable or constant values may be initialized by adding an initialization clause that beings with an
“=”. For example,

Dim Count As Integer = 1 ' Sets Count to 1

Each time this statement is encountered during execution, its value is initialized. If an initializer
clause is used, only a single variable name may appear to the left of the As keyword.

An arbitrary expression may appear to the right of the “=”. If the variable being initialized is an object
or structure, a New keyword may appear to the right of the “=”.

Be careful if you call a user-defined function as part of the initializer expression since some
variables may not be initialized yet.

Module-level variables are initialized once when a project is started and are processed in the order
in which they appear in the module. They are initialized before any user-defined procedures are
executed (except in the case where you call a user-defined function from an initializer). Errors that
occur while initializing variables are listed as part of a hidden procedure named "_Init".

The New keyword may appear in a clause that declares an object or structure.  The Newmay
appear immediately after the As keyword, or may appear immediately after the “=” in an initialization
clause. Newmay not appear in both places within the same statement.

18 Copyright © 2024, Brooks Automation



Brooks Automation 4. Data Type and Variables
Part Number: 609644 Rev. A Data Type Arrays

Dim Loc1 As New Location ' Creates a location
' class instance

Dim Loc1 As Location = New Location ' Equivalent to above

A Const keyword indicates that the variable is read-only and cannot be changed during normal
execution.  Only the initialization clause can set the value of the Const keyword.

Const MaxCount As Integer = 10
MaxCount = MaxCount+1 ' Invalid

GPL only supports strong typing, i.e. all variables must be declared in a Dim, Static, Private, or
Public statement although the specific type of a variable may be excluded and will be automatically
set to the default.  [VB.Net allows strong typing to be disabled with the “Option Strict Off”
statement.]

Data Type Arrays

Any of the data types described above, including objects, support array variables.  The rank
(dimension) of an array can be from 1 to 4.  The number of array elements within a dimension is
limited by available memory.

The first index in an array is always element 0. When you declare an array size, you are specifying
the upper bound for a dimension.   So, the number of elements for a dimension is always equal to
the upper bound+1.  For example:

Dim Count(9) As Integer ' Allocates array of 10 elements

Versions of Basic such as VB6 supported means for defined ranges of indices that started with an
arbitrary first index number (e.g. “10 to 20”) and also statements such as “Option Base 1” that
forced the first index to always be 1.  However, VB.Net always starts arrays with index 0 and this is
the convention that is supported in GPL.

The Dim statement is used to declare an array variable.  The supported forms of this statement are
as follows:

Dim MyArray(3, 4) As Integer
Dim MyArray(,) As Integer

The first statement specifies a 2-dimensional array with 4 elements (0 to 3) in the first dimension
and 5 (0 to 4) in the second, for a total of 20 elements.  These elements are allocated when the Dim
statement is executed.

The second statement simply specifies a 2-dimensional array, but does not allocate any elements. 
Before you can use the array, you must either assign an array to it, or you must use a ReDim
statement to allocate the elements.

Copyright © 2024, Brooks Automation 19



4. Data Type and Variables Guidance Programming Language
Data Type Arrays Part Number: 609644 Rev. A

When array elements are allocated, numeric arrays have the value 0 and object arrays have the
value Nothing.  Initialization of array values using an “=” clause is not supported in GPL.

Once an array has been declared and its dimensionality established, the ReDim instruction can be
used to initialize or change the number of elements within any dimension.  ReDim can be applied to
any array, so no distinction is made between dynamically sizeable arrays and fixed arrays. 
However, ReDim cannot be used to change the rank of an array and ReDim cannot be used to
initially declare an array.  Some examples of ReDim are as follows:

Dim Count() As Integer
ReDim Count(9)
Dim TwoDCount(2,3) As Integer
ReDim TwoDCount(1,100)

Whole arrays may be assigned to each other with a single statement. When that occurs, the data
are not actually copied, but a pointer to the data in the right-hand array is copied to the left-hand
array variable so that both array variables access the same data.  This behavior is similar to object
variables.  For example:

Dim CountA(9) As Integer
Dim CountB() As Integer
CountB = CountA        ' CountB now refers to the same

' data as CountA

When single array elements are passed as procedure arguments, they behave the same as non-
array variables of the same type. When whole array elements are passed as procedure arguments,
pointers to either the array value () or the array variable () are passed, and the behavior is the same
as when passing objects. ByVal ByRef

All arrays of variables are members of the built-in Array class. You can use properties of this class
(Table 4-5) to determine the properties of any variable array.

Property Description

array
.GetUpperBound
(dim)

Returns the upper bound for a particular dimension of an array. The lower bound is always
0, so the total number of elements in this dimension is one greater than the upper bound.

array.Length The total number of elements in the entire array, in all dimensions.
array.Rank Returns the rank, which is the number of dimensions, in the array.

Table 4-5: Properties of Array Class

These property methods may only be used with an entire array, not with a subset or individual array
element.

Do not be confused when using the Length property with string arrays, for example, if you declare:
Dim sarray(3) As String:

20 Copyright © 2024, Brooks Automation



Brooks Automation 4. Data Type and Variables
Part Number: 609644 Rev. A Scope of Names

sarray.Length is the number of elements in the array, in this case 4 (from 0 to 3).
sarray(0).Length is the length of the string contained in sarray(0), initially 0.

Scope of Names

Variables, constants, and procedures all have names. The section of a project where these names
are known is called the scope of the name. Attempts to access a name outside its scope results in
an "Undefined symbol" error because a valid name cannot be found by the compiler.

In general, a name is known within the block where it is declared, and within any blocks contained in
the block where it is declared. For example, a variable declared in a procedure is known only in that
procedure, but a variable declared in a module is known in all procedures contained in that module.

To access a name from outside the block where it is declared, the name must be declared as
Public. Public names can be accessed from anywhere, provided that the path to the name is fully
specified. As a special case, Publicmodule-level names may be accessed without the module
name being specified, provided that the name is unambiguous in all modules.

For example:

Module MyMod
Public ModVar As Integer
Public Class My_class

Public Shared MaxSize As Integer
Private Shared Size2 As Integer

End Class
End Module

Module GPL
Public Sub Main

My_class.MaxSize = 100 ' Invalid, path not com-
plete

MyMod.My_class.MaxSize = 100 ' Okay
MyMod.My_class.Size2 = 100 ' Invalid, private vari-

able
ModVar = 20 ' Okay, special case

End Sub
End Module

Copyright © 2024, Brooks Automation 21



5. Objects and Classes Guidance Programming Language
Objects and Classes Overview Part Number: 609644 Rev. A

5. Objects and Classes

Objects and Classes Overview

“Objects” and “classes” are the basis of object-oriented programming. A class defines a collection of
related data and the procedures that operate on the data. In a sense, a class can be thought of as a
template. If multiple copies (or “instances”) of a class are required to store distinct sets of data,
multiple objects of that class are created.

Objects and classes are used within GPL to provide additional functionality that is not part of the
standard Basic Language and to organize functions that are related into easy-to-access groups.
This functionality includes: mathematical operations, I/O operations, motion specifications, and
robot control.

This section describes the general concepts associated with objects and classes. For illustration
purposes, some of the objects and classes that are built into GPL are mentioned briefly in this
section. The detailed description of these built-in GPL objects and classes are provided in later
sections.

Objects, Fields, Properties and Methods

An object is a collection of related data and the procedures that operate on the data.

As opposed to a traditional data array, objects can and normally do contain many different types of
data.  For example, the GPL Location Object that represents robot and part positions contains an
array of Double values to store a position and orientation, an Integer value for special flag bits, a
Boolean to indicate a choice of reference frames, a pointer to another object, plus other data.  The
values stored within an object are called “fields”. Generally, fields are accessed via “properties” of
the object.  The properties provide read and write access to field values and allow the values to be
formatted, processed or grouped.  Each field can have one, multiple, or no properties associated
with it.  For example, several properties of the Location Object access the same position and
orientation field data to allow the data to be presented as individual axis positions or a set of all axes
positions or a Cartesian position and orientation depending upon how the Location is defined.

22 Copyright © 2024, Brooks Automation



Brooks Automation 5. Objects and Classes
Part Number: 609644 Rev. A Classes of Objects

From a data point of view, objects are similar to C structures.  However, in addition to grouping data,
objects also have specific procedures defined for operating on the object’s fields.  These object-
specific procedures are called “methods”.  For example, the Location Object hasmethods for
inverting its Cartesian position and for combining the positions of two Location Objects.

Depending upon how they are defined, somemethods operate like subroutines while others return
values like functions.  If amethod returns a value, it can be used in any expression that is
appropriate for the type of its returned value.  If amethod operates like a subroutine, it must appear
in a statement by itself and cannot appear within an expression.  Either type of method can have a
list of required arguments in the same manner as subroutines and functions.

More generally, fields, properties, andmethods are referred to as “members” of an object or class. 
For the most part, you should only need to concern yourself with properties andmethods of objects.

Classes of Objects

A class is a formal description and template for a type of object and defines its fields, properties and
methods.

In general, there are two types of classes:  non-global and global.  A non-global class does not hold
any data and relies upon its objects for data storage.  Each object for a given class will have the
same types ofmembers but will contain an independent set of values for eachmember.  For
example, a typical robot application will have multiple Location Objects.  Each Location will store
the data that describes a specific part or robot position.  However, all of the Location Objects will
be derived from the same Location Class and will have the same types ofmembers.

A global class is like a non-global class in that it defines all of the fields, properties andmethods
associated with this class. However, a global class is used when a single set or no set of data exists,
so that a global class never has any objects. For example, many of the arithmetic functions (e.g.
sine, cosine, square root) are part of the Math Class . This is done as a convenience to allow these
functions to be grouped together and therefore easily accessed. However, the Math Class has no
fields, no properties and no data, just methods. Consequently, the global Math Class has no
objects.

The Dot “.” Operator

Within GPL, a period character “.”, also known as the dot operator, serves as a preface character to
identify a member of a class or an object.  To access a specific member of an object or class, you
would write:

object.member  or  class.member

Copyright © 2024, Brooks Automation 23



5. Objects and Classes Guidance Programming Language
Object Variables and the New Clause Part Number: 609644 Rev. A

For global classes, since there are no objects, only the “class.member” form of reference can be
used.  For non-global classes, most references are to the values of objects and are written as
“object.member”, although the “class.member” form is permitted for certain methods.

By making use of the dot operator, properties of objects can be used in assignment statements and
expressions in exactly the same manner as you would employ any other variable of the same data
type.  Also, the dot operator permitsmethods to be invoked in the same manner as you would
invoke any subroutine or function.

Some examples of the dot operator are as follows:

Dim Pos_x, Value As Double
Pos_x = location_object.X+2 ' Get x-axis displacement + 2
location_object.X = 3 ' Set x-axis displacement property
Value = Math.Sqrt(3) ' Sqrt is method of Math Class
location_object.Here ' Invoke method to record position

The dot operator can be used multiple times in succession if a property or method returns another
object.  For example, the method that inverts a Location returns a Location value.  Therefore, the
following could be written to first invert a Location and then extract the x-axis displacement of the
result.

Pos_x = location_object.Inverse.X

Object Variables and the New Clause

While the members of an object can be treated like any other variable of the same data type, object
variables are quite different from other variables.  That’s because an object variable does not
contain the value of the object, it contains a reference (or “pointer”) to the memory where the value
is stored.  For example, if we declare a Location variable:

Dim My_loc As Location

This statement creates a pointer, My_loc, to an object of the Location Class.  However, at this time,
the My_loc object variable has not allocated any storage for the value of the object and so its pointer
is set to “Nothing”.  If you attempt to access a member of My_loc at this time, an error would be
generated.  In general, before an object can be used, you must either allocate memory to the pointer
(see below), copy a pointer to an existing value or call a method that returns a value pointer.

The standard way of creating (“allocating”) an object value is by using a New clause.  This clause
may appear in a Dim statement or in an assignment statement and has the following syntax:

New class_name

where class_name is the name of the class for which you want to create an object value.

24 Copyright © 2024, Brooks Automation



Brooks Automation 5. Objects and Classes
Part Number: 609644 Rev. A Copying Object Variables and Values 

For example, the following three cases all declare a location object variable and allocate a Location
Object value for it.

Dim My_loc As New Location ' Create new location value
-or-

Dim My_loc As Location = New Location ' Same as above
-or-

Dim My_loc As Location ' Declares variable only
My_loc = New Location ' Creates the location value

In general, if you are unsure of whether to allocate a data block or not, you should probably go
ahead and allocate using the New clause.  Using New unnecessarily will be somewhat less
efficient, but GPL automatically takes care of managing allocated object values and so memory is
never lost (i.e. you cannot create a memory “leak”).

Copying Object Variables and Values 

Since an object variable is a pointer to a value, the following simple assignment statement does not
copy the value of an object, it copies an object pointer:

My_loc = Another_loc

At the conclusion of this instruction, My_loc and Another_loc both point to the same object value. 
Furthermore, if My_loc was the only pointer to a different object value, that object value will have
been deleted (“deallocated”).

This use of pointers allows some sophisticated programming techniques, but it can also be
confusing.  For example, after the assignment statement above, changing a property of either My_
loc or Another_loc will alter the property as seen by the other object. For example:

Dim My_Loc1 As New Location ' Create new location value
Dim My_Loc2 As Location ' Does not create value
Dim tmp As Double
My_Loc1.X = 10
My_Loc2 = My_Loc1 ' Both Loc2 and Loc1 now

' have the same value pointer
tmp = My_Loc2.X ' tmp gets the value 10
My_Loc1.X = 20
tmp = My_Loc2.X ' tmp now gets the value 20

Copyright © 2024, Brooks Automation 25



5. Objects and Classes Guidance Programming Language
Objects as Procedure Arguments Part Number: 609644 Rev. A

Clone Method

Many classes include a Clonemethod to create an exact copy of an object.  The value of the Clone
method is a new object value that is the same as the referenced object. When this value is assigned
to a variable, it is independent of the original object value.

For example:

Dim My_Loc1 As New Location ' Create new location value
D im My_Loc2 As Location ' Does not create value
Dim tmp As Double

My_Loc1.X = 10
My_Loc2 = My_Loc1.Clone ' Loc2 gets a copy of Loc1
tmp = My_Loc2.X ' tmp gets the value 10
My_Loc1.X = 20
tmp = My_Loc2.X ' tmp still gets the value 10

Nothing

The keyword Nothing is a built-in function that returns an object with no value.  If you assign
Nothing to an object variable, its previous pointer is removed and any attempt to access the
variable results in an error. When an object variable is newly declared its value is Nothing unless a
New clause was specified.

Assigning Nothing to an object variable releases the memory associated with the object value,
provided it is not being used elsewhere.

Objects as Procedure Arguments

Like other variables and values, object values may be passed as procedure arguments.  Object
values are always passed as pointers, so the operation of ByVal and ByRef is a little different from
that of other arguments.

ByVal 

When an object value is passed ByVal, a pointer to the object value is passed to the called
procedure.  That means that changes made to the value via the called procedure parameter are
seen by the caller.  But changes made to the variable are not seen by the caller.

For example:

Sub My_Sub (ByVal Loc As Location)
Loc.X = 20 ' Changes original value
Loc = New Location ' Create new value locally

26 Copyright © 2024, Brooks Automation



Brooks Automation 5. Objects and Classes
Part Number: 609644 Rev. A User-Defined Classes

Loc.X = 30 ' Changes local value
End Sub

Sub Main()
Dim Loc1 As New Location ' Create new location value
Dim Loc2 As Location ' Does not create value
Dim tmp As Double
Loc2 = Loc1 ' Copy value pointer
My_Sub ( Loc1 ) ' Pass pointer to Loc1 value
tmp = Loc1.X ' Gets 20 from original value
tmp = Loc2.X ' Gets 20 from original value

End Sub

ByRef

When an object value is passed ByRef, a pointer to the object variable is passed to the called
procedure.  That means that changes made to either the value or the variable via the called
procedure parameter are seen by the caller.

For example:

Sub My_Sub (ByRef Loc As Location)
Loc.X = 20 ' Changes original value
Loc = New Location ' Caller variable changed
Loc.X = 30 ' Changes new value

End Sub

Sub Main()
Dim Loc1 As New Location ' Create new location value
Dim Loc2 As Location ' Does not create value
Dim tmp As Double
Loc2 = Loc1 ' Copy value pointer
My_Sub ( Loc1 ) ' Pass pointer to Loc1 variable
tmp = Loc1.X ' Gets 30 from new value
tmp = Loc2.X ' Gets 20 from original value

End Sub

User-Defined Classes

In addition to using the built-in classes, users can define their own classes within GPL.  User defined
classes are a very powerful feature that can be of assistance is organizing a GPL project. However,
for programmers that are not comfortable with object oriented programming, user defined classes
do not need to be used and this section can be skipped. More traditional arrays of numeric and
string variables are supported in GPL and can be utilized to implement a complete application.

A user class definition begins with a Class statement and ends with an EndClass statement. A
class may be defined at the top level of a file, within a module, or within another class. User-defined
classes serve as a template for objects that contain arbitrary variable fields and are associated with
procedures that create and modify the objects.

Copyright © 2024, Brooks Automation 27



5. Objects and Classes Guidance Programming Language
User-Defined Classes Part Number: 609644 Rev. A

Class variables, procedures, and nested classes can be declared as either Public or Private. By
default these items are all Private. A Private item may not be referenced outside of the class in
which it is declared. A Public item may be referenced outside of a class by using the syntax: class_
name.item_name or object_name.item_name.

Class Variables

By default, variables declared within a class are templates for fields within objects of that class.
Independent copies of these variables are found in each object of the class and do not exist outside
of an object. If a non-shared class variable has an initializer, that field is set to the initializer value
whenever an object is created.

If a class variable is declared Shared, only a single copy of the variable exists and is accessed
independently of any objects. A PublicShared variable is normally referenced by the syntax: class_
name.item_name, to emphasize that it is associated with the class and not the object. A
PublicShared variable may also be accessed by the syntax: object_name.item_name which
results in the same single value being referenced. The second syntax example should be avoided to
prevent confusing it with a non-shared variable. If a Shared class variable has an initializer clause,
the initialization occurs once when the main thread starts.

An internal Sub procedure named _Init is automatically generated to perform shared variable
initialization. An internal Sub procedure named _New is automatically created to perform
initialization when a new object is created. Do not attempt to create procedures with these names.

Class Procedures

Sub, Function, and Property procedures may all be members of a class. By default, procedures
declared within a class are associated with an object of that class. They are invoked by the syntax:
object_name.procedure_name. Within such procedures, fields and other procedures in the class
may be referenced without specifying object_name as a prefix. Instead, the object that was
referenced when the procedure was initially called is assumed.

If a class procedure is declared as Shared, it is not associated with any object, and may be invoked
simply as class_name.procedure_name. Since there is no object associated with this procedure, it
cannot reference non-shared fields or class procedures unless it explicitly includes an object_name
as a prefix.

In the example below, the variable count is a field within the class cc. The procedureMain creates a
new object, aa, of class cc and sets its count field to 5. When the Inc_count procedure is called, it is
passed the object aa. When Inc_count executes, its references to count are actually references to
the field count within the passed aa object.

Public Class cc
Public count As Integer ' Count is a field in a cc-class

obj
Public Sub Increment

28 Copyright © 2024, Brooks Automation



Brooks Automation 5. Objects and Classes
Part Number: 609644 Rev. A User-Defined Classes

count = count+1 ' Inc count field in the current
obj

End Sub
End Class

Sub Main()
Dim aa As New cc ' Creates a new object of class

cc
Dim bb As New cc ' Creates a new object of class

cc
aa.count = 5 ' Sets count field in the object

aa
aa.Increment ' Calls Sub Increment for object

aa
bb.count = 20 ' Sets the field count in object

bb
bb.Increment ' Calls Sub Increment for object

bb
Console.WriteLine(aa.count) ' Writes 6
Console.WriteLine(bb.count) ' Writes 21

End Sub

Property procedures improve readability by allowing assignment statements to call procedures that
get and set data values. Reading a Property value is very similar to calling a function that returns a
value. Writing a Property value looks like an assignment statement. Read-only properties cannot
be written, and write-only properties cannot be read.

A Property definition must contain a get block (that begins with aGet statement and ends with an
End Get statement) or a set block (that begins with a Set statement and ends with an End Set
statement) or both. When a Property value is read, the get block procedure is executed. When a
Property is written, the set block procedure is executed.

In the example below, the PropertySize is defined to get and set the internal field value size_in.
Additionally, the Set block clips the value to make sure that size_in is always in the range 0 to 10.
Since size_in is declared as Private, it cannot be changed directly from theMain procedure.

Public Class cc
Private size_in As Integer ' size_in is field in cc-class
Public Property Size As Integer

Get
Return size_in ' Simply return the field value

End Get
Set (value As Integer)

If value > 10 Then
value = 10

ElseIf value < 0 Then
value = 0

End If
size_in = value ' Set clipped value in field

End Set
End Property

End Class

Copyright © 2024, Brooks Automation 29



5. Objects and Classes Guidance Programming Language
User-Defined Classes Part Number: 609644 Rev. A

Sub Main()
Dim aa As New cc ' Creates a new object of class cc
Dim ii As Integer
aa.Size = 20 ' Calls the Size Set Property
ii = aa.Size ' Calls the Size Get Property
Console.WriteLine(ii) ' Displays value 10
aa.size_in = 5 ' Invalid since size_in is Private

End Sub

Me Object

When a non-shared class procedure is called, it is automatically associated with an object. This
object is used implicitly whenever a non-shared procedure or field from the current class is
referenced. This associated object may be accessed directly by the built-in objectMe. This object
always has the type of the current class. You can use theMe object when calling procedures that
require an object as a parameter. If you attempt to useMe in a shared procedure, or one not
associated with a class, an exception occurs.

Constructors

When an object is created with a New keyword, all fields in the new object are normally set to 0 (for
numeric fields), empty (for string fields), and undefined (for object fields).

If a Sub procedure named New is defined for a class, it is automatically called whenever a new
object is created. The New procedure may include an argument list. There may be multiple
overloaded New procedures, each with a different argument list.

For example:

Public Class cc
Public count As Integer ' Count is field in cc-class
Public Sub New

count = 25 ' Set count to 25
End Sub
Public Sub New (value As Integer)

count = value
End Sub

End Class

Sub Main()
Dim aa As New cc ' Calls first New procedure
Dim bb As New cc(15) ' Calls second New procedure
Console.WriteLine(aa.count) ' Writes 25
Console.WriteLine(bb.count) ' Writes 15

End Sub

30 Copyright © 2024, Brooks Automation



Brooks Automation 5. Objects and Classes
Part Number: 609644 Rev. A Limitations

Limitations

All objects in GPL must have an explicit class specified.  You cannot simply declare a variable as
typeObject.  That means that late binding of objects is not supported.

Copyright © 2024, Brooks Automation 31



6. Arithmetic Operations Guidance Programming Language
Arithmetic Expressions Part Number: 609644 Rev. A

6. Arithmetic Operations

Arithmetic Expressions

Table 6-1 documents the order in which elements of an arithmetic expression are evaluated (i.e. the
order of precedence).  The operations are presented in their order of precedence starting with the
highest precedence, that is, those elements that are evaluated first.  For operators that have an
equal precedence, elements are evaluated left-to-right.  Parentheses can be used to change the
order of evaluation.  Operations within parentheses are always evaluated before operations that are
outside of the parentheses.

Operation Symbol Notes

Exponentiation ^
Raises a value by a specified power.  For example “x ^ 3” cubes the
value of x.  Powers have to be integer numbers if the number being
operated on is negative.  Otherwise, powers can have fractional parts.

Unary negation -
This is a negative sign in front of a variable or constant that does not
indicate a subtraction operation.  For example, 2 * -4 is valid and
produces a value of –8.

Multiplication/division *,  /
This indicates the standard multiplication and division operations.  For
division, even if the divisor and the dividend are integer values, the
result is computed as a real number with a fractional part.

Integer division \
This indicates an integer division operation.  Independent of the data
type for the divisor and dividend, the result is truncated to an integer
number.  For example, “2.3 \ 2” yields a value of 1.

Modulus calculation Mod
Computes the modulus of two numbers.  For “xMod y”, this is
equivalent to dividing x by y and returning the remainder.  For example,
“13.3Mod 2” is equal to 1.3.

Addition/subtraction +,  -

Standard addition and subtraction operations.  Automatically converts
integer values to floating point and computes the result in floating point. 
If the value is stored into an integer variable type, the resulting answer
is converted to integer before storage.

String concatenation + or &
Either of the two symbols can be used to indicate string concatenation.
However, the use of "&" is preferred in place of "+" to clearly specify a
string concatenation operation instead of numerical addition.

Arithmetic bit shift <<, >>

These are arithmetic shift operations and not bit rotations or logical
shifts.  For left shifts, a 0 is always shifted into the low-order bit.  For
right shifts, for positive numbers a 0 is shifted into the high-order bit and
a 1 is shifted in for negative numbers. 

Table 6-1: Arithmetic Expressions, Order of Precedence

32 Copyright © 2024, Brooks Automation



Brooks Automation 6. Arithmetic Operations
Part Number: 609644 Rev. A Arithmetic Expressions

Operation Symbol Notes

Relational comparisons =, <>, <, >,
<=, >=, Is

The first six relational operator symbols represent “equal to”, “not equal
to”, “less than”, “greater than”, “less than or equal to”, and “greater than
or equal to”. The operands to the left and right of these relational
operators can either both be numerical or string values.  The Is operator
determines if two object references refer to the same object. For
example "object1 Is Nothing".

Logical NOT Not Converts a False (=0) value to True (-1) and any True (<>0) value to
False (0).

Logical or bitwise AND And,
AndAlso

Performs a logical AND operation unless either of the operands is not a
Boolean value, in which case, a bitwise operation is performed.  All
operands of And are always evaluated even if an earlier operand has
already decided the result. AndAlso prematurely stops evaluation if
the result is already False.  The following illustrates the logical AND
operation:
True And True -> True
True And False -> False
False And True -> False
False And False -> False

Logical or bitwise OR Or, OrElse

Performs a logical OR operation unless either of the operands is not a
Boolean value, in which case, a bitwise operation is performed.  All
operands ofOr are always evaluated even if an earlier operand has
already decided the result. OrElse prematurely stops evaluation if the
result is already True.  The following illustrates the logical OR
operation:
True Or True -> True
True Or False -> True
False Or True -> True
False Or False -> False

Logical or bitwise XOR Xor

Performs a logical Exclusive Or operation unless either of the operands
is not a Boolean value, in which case, a bitwise operation is performed. 
The following illustrates the logical XOR operation:
True Xor True -> False
True Xor False -> True
False Xor True -> True
False Xor False -> False

5.1.1. In general, most arithmetic expressions evaluation with GPL is performed in double precision
floating point.  For example, when two numbers are added together, they are first converted to
Double’s if necessary and then the addition operation is performed.  The results of expressions are
converted to the appropriate data types when a variable is assigned a value.  Because of this, GPL
generally executes more quickly when variables are declared as Double’s than the other types of
numeric values.

Copyright © 2024, Brooks Automation 33



6. Arithmetic Operations Guidance Programming Language
Arithmetic Functions and Methods Part Number: 609644 Rev. A

Arithmetic Functions and Methods

Table 6-2 summarizes the standard arithmetic and trigonometric operations that are provided in
GPL.  As a convenience during editing, the operations within the first table are provided as methods
of theMath Class.  This allows programmers to display a pick list of theMathmethods and easily
see all of operations that are available.  The second table documents functions that are not part of
theMath Class. These functions are provided in this manner for compatibility with other Basic
Languages.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer, Single,
Double, are automatically performed as required.  So, it is not necessary to have different variations
on these methods and functions to deal with the different possible mixes of input parameter data
types.  Also, these methods and functions generally produce results that are formatted as Double’s. 
Results are automatically converted to smaller data types as necessary, e.g. Double -> Integer,
and will not generate an error so long as numeric overflow does not occur.

For more information on these methods and functions, please see the Reference Documentation
section.

Math Methods Description
Math.Abs(expression) Returns the absolute value of any arithmetic expression.
Math.Acos(cosine) Returns the angle that corresponds to a specified cosine value.
Math.Asin(sine) Returns the angle that corresponds to a specified sine value.
Math.Atan(tangent) Returns the angle that corresponds to a specified tangent value.
Math.Atan2(sine_factor, cosine_
factor) Returns the angle that corresponds to the quotient of two values.

Math.Ceiling(value) Returns the smallest integer number that is greater than or equal to a
value.

Math.Cos(angle) Returns the cosine of a specified angle.
Math.Cosh(angle) Returns the hyperbolic cosine of a specified angle.
Math.E Returns the natural logarithmic base constant.
Math.Exp(exponent) Returns the natural logarithmic constant, e, raised to a specified power.
Math.Floor(value) Returns the largest integer number that is less than or equal to a value.
Math.Log(value) Returns the natural logarithm (base-e logarithm) of a specified value.
Math.Log10(value) Returns the base-10 logarithm of a specified value.
Math.Max(value_1, value_2) Returns the larger of two values.
Math.Min(value_1, value_2) Returns the smaller of two values.
Math.PI Returns the constant π.
Math.Pow(base, exponent) Returns a specified base value raised to a specified power.
Math.Sign(value) Returns a number that indicates the sign of a specified value.
Math.Sin(angle) Returns the sine of a specified angle.
Math.Sinh(angle) Returns the hyperbolic sine of a specified angle.
Math.Sqrt(value) Returns the square root of a value.
Math.Tan(angle) Returns the tangent of a specified angle.
Math.Tanh(angle) Returns the hyperbolic tangent of a specified angle.

Table 6-2: Arithmetic and Trigonometric Operations in GPL

34 Copyright © 2024, Brooks Automation



Brooks Automation 6. Arithmetic Operations
Part Number: 609644 Rev. A Arithmetic Functions and Methods

Built-in Functions Description
Fix(number) Returns the integer portion of any numeric type by truncating towards zero.
Int(number) Returns the integer portion of any numeric type by truncating towards negative infinity.
Rnd(seed) Returns a pseudo random number.

Copyright © 2024, Brooks Automation 35



7. Strings and String Expressions Guidance Programming Language
Strings and String Expressions Overview Part Number: 609644 Rev. A

7. Strings and String Expressions

Strings and String Expressions Overview

String variables, assignment statements, and expressions provide the means for storing and
manipulating text within GPL.  As such, Strings are also the primary means for transferring data in
and out of the system via the serial communications ports, the file system, and the Ethernet
interface.

String variables store a series of ASCII characters and can be of arbitrary length. However, String
operations have been optimized to execute most efficiently on Strings that are 128 characters or
less in length.

String constants must be delimited by double quote marks, e.g. "Hello world", and can at most be
128 characters in length.  To embed a double quote mark within a String constant, enter two double
quote marks in a row, e.g. "Tom said, ""Hello world""".

As with other variables, String arrays are supported and the values of procedure level String
variables can be initialized in DIM statements.  For example,

Dim name As String = "Charlie"

A number of easy-to-use functions are provided for converting between String values and
numerical values, e.g. CStr, CDbl, CInt.  Each of these built-in functions was described earlier in
the section on Basic Data Types. 

As a convenience, GPL automatically converts a String value to a Double whenever a numerical
value is expected and a String is encountered instead. For example, the following statements are
legal:

Dim a As Double
a = 2.34 + "1.01" ' Legal. a will be equal to 3.35

However, it is generally better practice to utilize the explicit conversion routines rather than relying
upon the automatic conversions.  The automatic conversions can result in some computations
whose results may not be clear.

36 Copyright © 2024, Brooks Automation



Brooks Automation 7. Strings and String Expressions
Part Number: 609644 Rev. A Strings and String Expressions Overview

In most cases, when a String value is required as an input, a String expression can be provided.  A
String expression can consist of a String variable, constant, function or method or a concatenation
of two or more of these String elements.

Two or more String elements can be concatenated together by utilizing the concatenation operator,
"&". Also, for compatibility with other Basic compilers, the "+" can alternatively be used to indicate
concatenation.  However, given the automatic String to numeric conversion features of the
language, the use of the "+" can make it less obvious whether a statement is intended to produce a
String or a numeric result.  Therefore, the use of the "&" concatenation operator is recommended
over the "+".

The following is an example of String concatenation.

Dim s1, s2 As String
s1 = "Joe's"
s2 = s1 & " balance: " & CStr(10.2) ' s2 = "Joe's balance:
10.2"

Since String values are often generated by appending additional text on to the end of the value of a
String variable, for computational efficiency, the concatenation assignment operator is supported. 
For example,

s1 &= " more" is equivalent to s1 = s1 & " more"

The advantage of the concatenation assignment operator is that appended text is directed added
onto the end of the variable's value.  In the standard assignment statement, the value, s1, is copied
to an intermediate variable where it is concatenated with the appended String value, " more".  The
resulting value then replaces the original value of the variable.

The values of two Strings can be compared using the String.Comparemethod. In addition,
Strings can be compared using the standard arithmetic relational comparison operators (=, <>, <,
>, <=, >=). Comparisons performed using the relational operators are always performed case
sensitive, i.e. “A” is not equal to “a”. This is equivalent to specifying “Option Compare Binary” in
some Basic compilers. To perform case insensitive comparisons, use the Comparemethod or force
both String values to be upper or lower case.

Internally, String variables are implemented using many of the same procedures as those that
apply toObjects. Consequently, many of the basic string manipulation operations are provided as
methods and properties that can be applied to String variables.  However, unlike other built-in
Objects, when a String variable is created, it automatically has its data storage allocated. So, the
use of the New qualifier is not needed in connections with String variables and is not permitted.

Table 7-1 summarizes each of the Stringmethods and properties.

Copyright © 2024, Brooks Automation 37



7. Strings and String Expressions Guidance Programming Language
Strings and String Expressions Overview Part Number: 609644 Rev. A

Member Type Description
String
.Compare Method Compares the values of two Strings in either a case sensitive or case insensitive

manner.
string
.IndexOf Method Searches for an exact match of a substring within the string variable and returns

the starting position if found (0-n).
string.Length Property Returns the number of characters in the String.

string.Split Method Divides the string variable value into a series of substrings based upon a specified
separator character and returns the array of substrings.

string
.Substring Method Returns a substring of the string variable starting at a specific character position

and with a specified length.
string
.ToLower Method Returns a copy of the string with all lower case characters.

string
.ToUpper Method Returns a copy of the string with all upper case characters.

string.Trim Method Trims off characters or white space from the start and end of a String variable
value.

string
.TrimEnd Method Trims off characters or white space from the end of a String variable value.

string
.TrimStart Method Trims off characters or white space from the start of a String variable value.

Table 7-1: String Methods and Properties

For compatibility with older Basic compilers, the following String functions are provided in Table 7-
2.  In many instances, very similar functionality is provided by the StringMembers listed in the
previous table.

Built-in String
Functions Description

Asc(string) Converts the first character of a String to its equivalent ASCII numerical code.

Chr(expression) Given a numerical ASCII code, a String that consists of the equivalent ASCII
character code is returned.

Format(expression,
format_s)

Converts a numerical value to a String value based upon a specified output format
specification.

FromBitString (string,
type, big_endian)

Extracts a number that has been packed in its internal bit format into a String and
returns the value of the number.

Instr(start,string_t,
string_s)

Searches for an exact match of a substring within a String expression and returns the
starting position if found (1-n).

LCase(string) Returns a String value that has been converted to lower case.
Len(string) Returns the number of characters in a String.

Mid(string, first, length) Returns a substring of the string starting at the first character position and consisting
of length number of characters.

ToBitString
(expression, type, big_
endian)

Converts the value of an expression to a specific numeric type and returns the internal
bit representation of the number packed into a String value.

UCase(string) Returns a String value that has been converted to upper case.

Table 7-2: String Functions

38 Copyright © 2024, Brooks Automation



Brooks Automation 8. Assignment Statements
Part Number: 609644 Rev. A Assignment Statements Overview

8. Assignment Statements

Assignment Statements Overview

The basic value assignment statements have the following form:

numeric_variable = arithmetic_expression '
Comment

or
string_variable = string_expression '
Comment

where the arithmetic_expression can be arbitrarily complex and can consist of variable values and
functions inter-related by the arithmetic operations described in the previous section, and string_
expression can be a string variable, string function, string valued property, string constant or
concatenated string value.

For all arithmetic assignment statements, the result of the statement is always converted to the data
type of the variable being assigned the new value.  For example:

Dim a, b As Single, c As Integer
a = 2.25 ' Assigned floating point value
b = 3.5 ' Assigned floating point value
c = a * b ' Result of 7.875 rounded and
stored as 8

In addition to the standard assignment statements (e.g. x=2), assignment operators are provided
that perform an operation on a variable value and store the result back into the variable value.  For
example:

x *= 3              is equivalent to x = x * 3

Table 8-1 contains the list of assignment operators and their equivalents.

Copyright © 2024, Brooks Automation 39



8. Assignment Statements Guidance Programming Language
Assignment Statements Overview Part Number: 609644 Rev. A

Assignment operator Sample Use Equivalent Code
^= Operator x ^= y x = x ^ y
*= Operator x *= y x = x * y
/= Operator x /= y x = x / y
\= Operator x \= y x = x \ y
+= Operator x += y x = x + y
-= Operator x -= y x = x – y
<<= Operator x <<= y x = x << y
>>= Operator x >>= y x = x >> y
&= Operator x &= y x = x & y

Table 8-1: Operators and Equivalents

In addition to simplifying and clarifying complex program statements, the use of the assignment operators can be more
efficient especially when the variable or property that is being assigned the new value has a complex array index or
other specification or long string values are being concatenated.  This is due to the fact that the full variable or property
specification only has to be evaluated once to obtain the memory address of its value.

40 Copyright © 2024, Brooks Automation



Brooks Automation 9. Control Structures
Part Number: 609644 Rev. A Control Structures Overview

9. Control Structures

Control Structures Overview

The statements described in this section alter the sequential execution of instructions within a
procedure, i.e. they alter the flow of control.  For example, these statements conditionally execute
blocks of statements, repeatedly execute blocks of statements a fixed number of times or
repeatedly execute blocks of statements until a condition is satisfied.

GoTo Statements

This instruction executes an unconditional branch and continues execution at a specified labeled
statement.

GoTo label

A labelmust either conform to the conventions for a variable name (e.g. label3) or an integer literal
(e.g. 1000).   To label an instruction, the label is placed first on the line followed by a colon (:)
followed by any standard instruction.

In general,GoTo instructions can make programs more difficult to understand.  So, whenever
possible, other control structures should be used in place ofGoTo’s.

If…Then…Else…End If Statements

This control structure tests one or more expressions and conditionally executes at most one block of
statements.

If condition Then
if_statements

ElseIf elseif_condition Then
elseif_statements

Else
else_statements

End If

Copyright © 2024, Brooks Automation 41



9. Control Structures Guidance Programming Language
Control Structures Overview Part Number: 609644 Rev. A

This control structure first tests the condition to determine if it is True (<>0) or False (=0).  If True,
the if_statements are executed and the remainder of the statements down to the End If are skipped. 
If False, the if_statements are skipped and the first ElseIf or Else, if present, is processed.  If an
ElseIf clause is present, its elseif_condition is tested and, if True, the associated elseif_statements
are executed after which execution continues after the End If.  Otherwise, the elseif_statements are
skipped and the next ElseIf or Else is processed.  If all conditional tests fail and an Else is present,
the else_statements are executed.

An If…Then can contain several or no ElseIf clauses.  If present, these must be specified before
the optional Else clause.

An If…Then can only contain a single optional Else clause.

Since True is defined to be <>0, any arithmetic expression that evaluates to <>0 will be interpreted
as a True condition.

For simple tests, this statement can be reduced to a single line format: If…Thenstatement.

For…Next Statements

This control structure executes a sequence of instructions a fixed number of times.

For variable = initial_value To final_value Step increment
for_loop_statements

Next variable

This control structure begins by setting the variable to the initial_value.  The variable can be any
numeric type, i.e.. Byte, Integer, Short, Single or Double.  Array variables as well as object and
structure fields are also permitted.  However, object and structure properties are not permitted.

If the initial_value does not exceed the final_value, the for_loop_statements are executed once. 
However, if the initial_value exceeds the final_value, the for_loop_statements are skipped and
execution continues at the statement following the Next instruction.  If the for_loop_statements are
executed, execution proceeds until the Next instruction is encounter. When the Next statement is
executed, the increment is added to the variable and its value is compared again to the final_value. 
So long as the final_value is not exceeded, the for_loop_statements are executed again and the
process is repeated.

The initial_value, final_value, and increment can all be arbitrarily complex arithmetic expressions. 
However, these expressions are only evaluated when the For statement is executed and their
values are saved for use by the Next statement.  Therefore, if the values of these expressions
change during the execution of the For loop it does not alter the saved values.  Since these
expression are only evaluated once, the For loop is generally more efficient that other looping
methods.

42 Copyright © 2024, Brooks Automation



Brooks Automation 9. Control Structures
Part Number: 609644 Rev. A Control Structures Overview

The increment value is optional can be positive or negative.  If positive, looping terminates when the
variable’s value is greater than the final_value.  If negative, looping terminates when the variable’s
value is less than the final_value.  If not specified, a value of 1 is assumed.

The For loop can be prematurely terminated by executing an Exit For statement or aGoTo
statement that branches outside of the For loop.

While…End While Statements

This control structure tests a condition and, if True, executes a block of statements repeatedly until
the condition is False.

While test_expression
while_statements

End While

This control structure begins by evaluating the test_expression.  If the expression value is True
(<>0), the block of while_statements is executed. When the End While is encounter, the test_
expression is evaluated again.  If the test_expression is still True, the while_statements are
executed again.  This sequence is repeated so long as the test_expression remains True. As soon
as the test_expression tests False (=0), the while_statements are skipped and execution continues
at the statement following the End While.

If the test_expression is False when theWhile begins execution, the while_statements are skipped
and are not executed.

TheWhile loop can be terminated before the conclusion of the while_statements by executing an
Exit While statement or aGoTo statement that branches outside of theWhile loop.

Do…Loop Statements

This control structure bounds a block of instructions that are repeatedly executed so long as a
specified expression evaluates to True or until the expression value becomes True.

Do While | Until condition
statements

Loop
-or-

Do
statements

Loop While | Until condition

Select…Case…End Select Statements

This control structure executes one of several blocks of statements based upon matching a numeric
or String expression value.  This control structure is similar to the If…Then...ElseIf statements in

Copyright © 2024, Brooks Automation 43



9. Control Structures Guidance Programming Language
Control Structures Overview Part Number: 609644 Rev. A

that a series of values are compared to determine the statements that are executed next.  However,
this control structure is more efficient and convenient than a series of If statements if a single value
is to be compared to multiple possible values.

Select match_value
Case test_expression,...,test_expression

case_statements
Case Else

else_statements
End Select

Thematch_value is evaluated once and then sequentially tested against each test_expression
specified in a series of Case statements. When a matching test_expression value is found, the
associated case_statements are executed.  Following the execution of the appropriate case_
statements, execution continues at the statement following the End Select. If no test_expression is
matched and a Case Else is present, the else_statements are executed.  If no test_expressionis is
matched and a Case Else is not defined, none of the case_statements are executed and execution
continues after the End Select.

Thematch_value can be a general numeric or String expression and can evaluate to any of the
basic arithmetic data types (e.g. integer, real number, byte) or a String type.

Any number of Case statements can be included. Each Case statement can be followed by one or
more numeric or String test_expression’s.

Each Case test_expressionmust take one of the following forms:

A general numeric expression, e.g. 2, a+b.

A general String expression, e.g. “blue”, stg1 & “ab”

If a test_expression does not match the data type of thematch_value, the expression is
automatically converted to the appropriate type.

Some example Case statements are as follows:

Case 1, 3, 5, 7, 11 ' First prime numbers
Case "red", color2, "blue" & "green"

Executing an Exit Select instruction will skip the remaining statements within a group of case_
statements or else_statements. Execution continues at the instruction following the End Select.

Nested Control Structures

In general, control structures can be nested within each other to an arbitrary depth and in arbitrary
combinations.  For example, aWhile loop can be embedded within anotherWhile loop or an
If…Then clause.

44 Copyright © 2024, Brooks Automation



Brooks Automation 10. Procedures, Delegates and Modules
Part Number: 609644 Rev. A Subroutines and Functions

10. Procedures, Delegates and Modules

Subroutines and Functions

The language includes user-defined subroutine (Sub) and function (Function) procedures. 
Functions are identical to subroutines except that a function returns a value and a call to a function
can be included in an arithmetic or string expression.  Except as noted in this document,
“procedure” or “routine” refer to both user-defined procedures and functions.

Calling a Procedure

A Function or Submay be invoked by placing its name as the first item in a statement or by using
the Call keyword.  If a Function is invoked in this manner, the returned value of a Function is
ignored.  In addition, a Function, but not a Sub, may be embedded in an expression whose type is
consistent with the type returned by the function.

When invoking either a Sub or a Function, parentheses must always be provided around the
argument list, with empty parenthesis supplied if there are no arguments.  In VB6, parentheses are
required if a Call is used and forbidden if a Call is not included.  In VB.Net, parentheses are only
optional for empty argument lists, although the Visual Studio.Net editor always inserts parentheses.

The following are some valid examples:

Call MyProcedure (1, 2, 3) ' ()always required for non-null
args
MyProcedure (1, 2, 3) ' Call is optional
x = 2 * MyFunction (y)
MyFunction(y) ' Do not care about the value

Copyright © 2024, Brooks Automation 45



10. Procedures, Delegates and Modules Guidance Programming Language
Subroutines and Functions Part Number: 609644 Rev. A

Returning from a Procedure

When a procedure is executed, the procedure exits and returns control to the calling routine when
one of the following is encountered:

1. The end of the procedure, marked by an End Function or End Sub statement.
2. An Exit Function or Exit Sub statement, depending on the procedure type
3. A Return statement.

If the top-level procedure exits, execution of its thread is terminated.

The returned value of a Function is specified by either an expression argument to the Return
statement or by assigning a value to the function name as if it were a variable.  For example:

Function Test (ByVal x As Double) As Double
If x < 10 Then

Return x+1     ' Exits with a value of x+1
Else

Test = x+2 ' Sets the return value to x+2
Exit Function ' Exits with the current return value

End If
End Function

Procedure Arguments

All arguments (including arrays and objects) can either be passed to a procedure by value (ByVal)
or by reference (ByRef).

For numeric, Boolean and String types, ByValmeans that a copy of the value is made for the
called procedure.  The called procedure may freely modify the argument variable without affecting
the value in the calling program.  By default, all arguments are passed ByVal.

For numeric, Boolean and String types, ByRefmeans that a pointer to the variable containing the
value is passed to the called program. Only variables can be passed by reference. When the called
procedure modifies its argument variable, it is actually modifying the value in the calling program.

Passing objects ByVal and ByRef has some subtle differences.  In both cases, accessing and
modifying members of the object have the same effect and change the same data.  They are
different for the case when you assign directly to the procedure argument.  In the ByVal case, you
only change the pointer to the value in the called procedure.  In the ByRef case, you change the
pointer to the value in the calling procedure’s object variable.

46 Copyright © 2024, Brooks Automation



Brooks Automation 10. Procedures, Delegates and Modules
Part Number: 609644 Rev. A Delegates

Not Supported

The language does not support theGoSub statement.  This statement allowed an arbitrary line
within a procedure to act as the start of a procedure embedded within a procedure.  Also, the
language does not support declaring a procedure as Static.  A Static procedure forced all of the
local variables of a procedure to be statically defined such that they retained their values between
calls.  Variables must be individually specified as being Static.

GPL does not supportOptional procedure arguments, initial argument values, or the ParamArray
keyword.  It also does not support passing a Set or Get Property as a ByRef argument.

Delegates

"Delegates" are a means of indirectly calling a function or subroutine procedure through an object
variable. You can define a Delegate object and then associate a particular function or subroutine
procedure to it. The object can be passed between routines like any other object and finally the
associated procedure can be called.

Delegates may be used to efficiently call a procedure from a table of procedures, based on a
numeric index. They may also be used to pass a call-back procedure to a server process.

The Delegate statement creates a new named class that holds a template for the procedure to be
called. For example, the statement

Delegate Function My_template(ByVal arg1 As Integer) As String

creates a class with the nameMy_template that can be used to call Function procedures that
accept a single Integer argument by-value, and return a String value. This statement is only a
declaration and does not do anything except create theMy_template class.

Suppose you have two functions:

Public Function f0 (ByVal mode As Integer) As String
:
End Function

Public Function f1 (ByVal mode As Integer) As String
:
End Function

You can create an array of Delegate objects that refer to these functions, using the template
defined earlier in the Delegate statement.

Dim del_obj(1) As My_template

Copyright © 2024, Brooks Automation 47



10. Procedures, Delegates and Modules Guidance Programming Language
Delegates Part Number: 609644 Rev. A

del_obj(0) = New My_template(AddressOf f0)
del_obj(1) = New My_template(AddressOf f1)
or

del_obj(0) = New My_template("f0")
del_obj(1) = New My_template("f1")

The function type and arguments for the functions f0 and f1 must match the defining Delegate
statement or a compiler error will be issued for by the New statements above.

If you have an index variable whose value is either 0 or 1, it can be used to select which of the two
functions is executed.

str = del_obj(index)(3) ' Call f0 or f1 with mode = 3

Delegate Statement

The Delegate statement creates a new class that serves as a template for any Delegate objects
that are associated with it. The Delegate statement’s procedure type (Sub or Function), the
procedure argument list, and the Function result type must match any procedures that are later
associated with a Delegate object of this class. You need to have a separate Delegate statement
for each variation of procedure type and argument list. A Delegate statement is similar to creating a
new class with the name of the Delegate. You cannot create a Delegate class for a property
method.

For example, the statement

Delegate Function My_template(ByVal arg1 As Integer) As String

creates a class with the nameMy_template that can be used to call Function procedures that
accept a single Integer argument by-value, and return a String value.

Creating Delegate Objects

Like other objects, a Delegate object must be declared before it can be used. Objects of this type
are just like any other object and can be global, inside a class, or local in a procedure. A typical
object variable declaration is:

Dim del_obj As My_template

which creates an object variable del_obj that is an instance of the previously declared Delegate
namedMy_template. Before the object variable can be used, the actual object must be created with
a New procedure using the name of the procedure as a String, or using the AddressOf operator.
For example:

del_obj = New My_template("f0")
or

48 Copyright © 2024, Brooks Automation



Brooks Automation 10. Procedures, Delegates and Modules
Part Number: 609644 Rev. A Delegates

del_obj = New My_template(AddressOf f0)

The parameter list and procedure type of f0must match the template of the Delegate statement for
My_template.

To associate a Delegate object with a non-shared class procedure, you need to provide both the
procedure name and the object instance to the AddressOf operator. You cannot use a String in
this case. The Delegate object saves a pointer to the object instance along with the procedure. For
example:

Class My_class
:
Public Function My_fn(ByVal mode As Integer) As String
:
End Function

End Class

Public Sub Test
Dim my_obj As New My_class ' Create an object from My_

class
Dim del_obj As My_template
del_obj = New My_template(AddressOf my_obj.My_fn)
' At this point, del_obj refers to my_obj.My_fn
Console.Writeline(del_obj(3)) ' Call my_obj.My_fn(3)

End Sub

AddressOf Operator

The AddressOf operator may be used in the constructor (New clause) when creating Delegate
objects. This operator finds the address of a procedure. If the procedure is a non-shared class
procedure, it also determines the object to be associated with the call. For example:

del_obj = New My_template(AddressOf global_function)

Associates del_obj with a global function that does not depend on any object.

del_obj = New My_template(AddressOf my_object.class_function)

Associates del_obj with the object referenced bymy_object and the class member function class_
function. If del_obj is used later to invoke class_function, that function is called with the value ofmy_
object at the time that del_obj was instantiated.

AddressOf vs. String

When the AddressOf operator is used in a New clause, the compiler finds the name of the
procedure during compilation. When a String containing the procedure name is used in a New
clause, the procedure name must be found during execution of the procedure. So AddressOf is

Copyright © 2024, Brooks Automation 49



10. Procedures, Delegates and Modules Guidance Programming Language
Modules Part Number: 609644 Rev. A

more efficient, but the String argument is more flexible since a String variable can be used to
associate different procedures with the same Delegate object.

When a New clause contains a String variable, the procedure name must either be a module-level
public procedure, or a top-level class public shared procedure. The String variable must have one
of the following forms:

l procedure_name

l module_name.procedure_name

l class_name.procedure_name

Modules

AModule is a named section of code that begins with aModule statement an ends with an End
Module statement. Modules may contain variable declarations, procedures, and class definitions.
Modules can only appear at the top-level of a file. They cannot appear inside of other modules or
classes.

Scope of Items within Modules

Modules provide a simple way to group variables, procedures, and classes, without concern about
name conflicts.

Module variables, procedures, and classes can be declared as either Public or Private. By default
these items are all Private. A Private item may not be referenced outside of the module in which it
is declared. A Public item may be referenced outside of a module by using the syntax:module_
name.item_name. As a special case, if item_name is unambiguous within all loaded modules, the
module_name.may be omitted.

All variables declared within a module (and not within a class or procedure) are implicitly Shared, so
they can be referenced within any procedure contained in the module. Consequently, only one copy
of each implicitly Shared variable value can exist. All references to the variable access the same
value. If a variable has any initializer clauses, the initialization occurs once when the main thread for
the Module is started. Const symbols behave the same as variables, except their values cannot be
changed once they are initialized.

Special Initialization Procedures

If a user Sub procedure named Init is defined within a module, it is executed as part of the module
initialization, before the startup procedure begins.

An internal Sub procedure named _Init is automatically generated to perform module-level
initialization. Do not attempt to create a procedure with this name.

50 Copyright © 2024, Brooks Automation



Brooks Automation 11. Exception Handling
Part Number: 609644 Rev. A Exception Handling Overview

11. Exception Handling

Exception Handling Overview

In automated systems, it is typically very important that the equipment be able to run unattended for
long periods of time.  Since errors and other unexpected events periodically occur, it is critical that
the system be able to automatically field execution exceptions, attempt to correct the problem by
responding in an appropriate manner, and continue execution if at all possible. In GPL, sections of
procedures or entire procedures can be bounded by a Try...Catch...Finally...End Try structure that
provides a formal means to intercept program exceptions and execute specific corrective actions. 
When an exception is handled in this manner, information on the type of exception is stored in an
Exception Object.

Try...Catch...Finally...End Try Statements

In the group of instructions shown below, if an exception of any type occurs when the try_
statements are executed, rather than halting execution and reporting an error, the system
automatically stores the exception information in the exception_object and branches execution to
the start of the catch_statements. The catch_statements can test the exception_object to determine
the nature of the exception and then perform whatever corrective action is necessary.  If the try_
statements complete execution without an error or when the catch_statements complete execution
after an exception, the finally_statements are always executed to perform any required cleanup. At
the completion of the finally_statements, regular instruction execution continues at the first
statement following the End Try.

Try
try_statements

Catch exception_object
catch_statements

Finally
finally_statements

End Try

A Try structure must contain either a single Catch statement or a single Finally statement or one of
each type of statement.  If a Catch statement is specified, it must always include an exception_
object.

Copyright © 2024, Brooks Automation 51



11. Exception Handling Guidance Programming Language
Try...Catch...Finally...End Try Statements Part Number: 609644 Rev. A

Try structures can be nested within each other.  For example, a Try structure can be contained
within the catch_statements of another, higher-level Try structure.  Also, procedure calls can be
contained within any of the statement blocks including the try_statements.  For example,

Public Sub MAIN
Dim exc1 As New Exception
Try

test()
Console.WriteLine("Test completed") ' Never gets here

Catch exc1
Console.WriteLine("Exception!") ' Is executed

End Try
End Sub

Public Sub test()
Dim ii As Integer
ii = 1 / 0 ' Generates exception
Console.WriteLine("Inside Test") ' Never gets here

End Sub

In this sample code, the only output will be "Exception!".  This is because the divide by 0 in test
generates an exception, which terminates execution of test.  If the call to test in theMAIN routine
was not embedded within a Try, the system would normally halt the execution of the thread and
report the error.  Since the call is within a Try block that has a Catch, execution is instead continued
at the first instruction within the Catch block. This feature permits exceptions that occur within
arbitrary depths of procedure calls to be fielded by a single Try structure.

A Try structure with a Finally instruction and no Catch instruction is only useful in a called
procedure when a higher-level calling procedure contains a Try structure with a Catch. When an
exception occurs in the try_statements of a called procedure with no Catch, the finally_statements
are executed before the procedure exits to the higher-level procedure that contains the Catch
statement.  In the example above, if the divide by 0 statement was part of a Try block that was
followed by a Finally block, the statements in the Finally block would have been executed prior to
returning to theMAIN routine.

There are special limitations on the use ofGoTo instructions in connection with Try structures.  A
GoTo contained in the catch_statements can branch execution into the corresponding try_
statements.  Also,GoTo's can be contained in the try_statements, catch_statements, and the
finally_statements so long as the branch is to an instruction within the same block of statements.  All
other branching into and out of the Try statement blocks and the main code is not permitted, e.g.
you cannot branch from outside of a Try structure into the try_statements or out of the try_
statements into the finally_statements.  For example,

Dim exc1 As New Exception
Try

retry:
Move.Loc(loc1, profile1)
Move.WaitForEOM

Catch exc1
If (exc1.ErrorCode = -153) Then

52 Copyright © 2024, Brooks Automation



Brooks Automation 11. Exception Handling
Part Number: 609644 Rev. A Throw Statement

profile1.Speed *= .9
GoTo retry ' LEGAL BRANCH

End If
GoTo bad_jump ' ILLEGAL!!!

End Try
bad_jump:

If an Exit Try statement is executed in either the try_statements or the catch_statements, execution
branches and continues at the first statement in the finally_statements. Exit Try instructions are
not permitted in the finally_statements.

Throw Statement

The Throw statement can be used to force an exception within a program at any time.  The syntax
for this instruction is as follows:

Throw exception_object

In addition to forcing an exception to halt program execution, the Throw statement is often used
within a catch_statements block to force an exception to be processed by a higher-level Try
structure.

Exception Class and Objects

Whenever an exception occurs, the data that defines the specific type of exception is stored and
passed in Exception Objects.  There are two basic types of Exceptions: robot Exceptions and
general Exceptions.  Both forms have a numeric property that indicates the basic type of error.  In
addition, the robot Exceptions contain information on the robot and axis that is associated with the
Exception.  The general Exceptions contain an error code qualifier in place of the robot and axis
information.

As with other types ofObjects, Exception Objects are defined with a Dim statement or as an
argument to a procedure. When an Exception Object is first created, normally the New token is
used to allocate the data section for theObject.

All of the properties and methods for the Exception Objects are described in detail in the
Reference Documentation section.  Table 11-1 summarizes this information.

Member Type Description

exception_obj.Axis Property Sets and gets a bit mask indicating the robot axes associated with a
robot Exception.

exception_obj.Clone Method Method that returns a copy of the exception_obj.

Table 11-1: Exception Objects, Summary

Copyright © 2024, Brooks Automation 53



11. Exception Handling Guidance Programming Language
Exception Class and Objects Part Number: 609644 Rev. A

Member Type Description

exception_obj.ErrorCode Property Sets and gets the number of the error message.

exception_obj.Message Method Returns the full text string that is generated based upon the
exception_obj properties.

exception_obj.Qualifier Property Sets and gets the error message qualifier for a general Exception.

exception_obj.RobotError Property Sets and gets the Boolean that indicates if an Exception is a robot
or general type.

exception_obj.RobotNum Property Sets and gets the number of the robot associated with a robot
Exception.

exception_
obj.UpdateErrorCode Method Updates a general (vague) Exception error code with a more

specific error code.

54 Copyright © 2024, Brooks Automation



Brooks Automation 12. Motion- and Controller-Related Classes
Part Number: 609644 Rev. A Motion- and Controller-Related Classes Overview

12. Motion- and Controller-Related
Classes

Motion- and Controller-Related Classes Overview

In the previous sections, the features of GPL that were described closely mimic those that are found
in other object orientation variants of the Basic Language.  Those features included arithmetic
expression representations, control structures, variable types and declarations, mathematical
functions, etc.

In the next sections, the features of GPL that have been added specifically to provide built-in motion
control facilities are described.  Consistent with the philosophy of object-oriented languages, these
special features are provided as properties and methods of built-in “Classes”.  In some cases, the
Classes are global system classes that simply serve to group features together as an aid in
accessing and understanding these facilities.  For global Classes there is a single copy of the
Class.  TheMath Class that was described earlier is a good example of a global system class.  In
other cases, the classes have multiple instances (objects) that allow programs to have multiple
copies of the objects, each with their own independent set of values for properties and methods. 
For example, in a Visual Basic program, the “Textbox” is a good example of the use of objects.  An
application can have multiple Textboxes each with different colors and sizes and other visual
effects.  In a motion application, robot locations are represented as objects to allow an application to
store multiple robot and object positions, each with its own special properties.

Table 12-1 describes the motion control specific classes that are included in GPL.  Each of these
classes is discussed in more detail in the following sections.

Motion Control
Class Description

Signal Class
(Global) Reads and writes digital, analog and other simple means of input and output

Location Class and
Objects Defines positions and orientations of the robot and objects

Profile Class and
Objects

Defines sets of parameters that specify the trajectory to be followed when moving
between Locations.

Table 12-1: Motion Control Classes

Copyright © 2024, Brooks Automation 55



12. Motion- and Controller-Related
Classes Guidance Programming Language

Signal Class Part Number: 609644 Rev. A

Motion Control
Class Description

Move Class 
(Global) Provides the basic methods for executing a motion between Locations using Profiles.

RefFrame Class
and Objects

Defines robot and part reference frames that can automatically alter the total (absolute)
positions and orientations of Locations.

Controller Class
(Global)

Provides access to general facilities provided by the motion control hardware such as
power control, timers, etc.

Robot Class
(Global)

Provides access to the attributes and properties of each robot such as their current
position and homing methods.

For many simple pick and place operations, only the first four basic classes need be utilized, i.e. the
Signal, Location, Profile, andMove Classes. The facilities provided by the more advanced
Classes (RefFrame, Controller, and Robot) can be brought into play as an individual becomes
more familiar with the system or as applications become more complex.

Signal Class

The global Signal Class provides access to the hardware features of the Guidance Control System
that allow GPL programs to interface to other equipment in the work cell using common, simple
techniques.  These interfaces include “digital input and output (I/O)” signals and “analog I/O”
signals.  Digital and analog I/O signals permit GPL programs to coordinate the operation of the robot
with other equipment using go/no-go semaphores and to interface to various simple sensors.

These hardware interfaces serve as global resources to all threads and are therefore represented
by a global class.   To access these interfaces, it is not necessary to create an instance of the class;
you can refer to the Signal Class directly.  For example, to read the value of the first digital I/O
signal you could execute the following:

Dim signal_state As Boolean
signal_state = Signal.DIO(1)

All of the properties and methods for the Signal Class are described in detail in the Reference
Documentation section.  Table 12-2 summarizes this information.

Member Type Description

Signal.AIO Property Sets and gets the values of the analog input and output channels.

Signal.DIO Property Sets and gets the values of the digital input and output channels.

Table 12-2: Signal Class, Summary

56 Copyright © 2024, Brooks Automation



Brooks Automation 12. Motion- and Controller-Related Classes
Part Number: 609644 Rev. A Location Class and Objects

Location Class and Objects

The Location Class and its instances (Location Objects or just Locations) are the fundamental
means for specifying robot and part positions and orientations in GPL.  Each Location Object
contains data that defines: a position and orientation; special robot configuration information
specific to the geometry of the robot to be used; and clearance data that define a safe position by
which the Location can be approached.

There are two basic types of Location Objects: Cartesian Locations and Angles Locations.

A Cartesian Location stores a robot or part position and orientation in Cartesian coordinates.  That
is, positions and orientations are represented as X, Y, and Z displacements and rotations in a
Cartesian coordinate system.

This is a very intuitive representation and has the advantage of representing positions and
orientations in a manner that is independent of a robot’s geometry.  When a Cartesian Location is
specified as a destination for a robot motion, the system automatically utilizes its built-in knowledge
of the robot’s geometry (i.e. its kinematics) to convert this Cartesian position into an equivalent set
of robot axes positions.  Furthermore, if the kinematic model of the robot includes corrections for
manufacturing tolerances (e.g. non-perpendicularity of axes, deviations in link lengths), the
Cartesian Locations will be automatically corrected for these variances.

In addition to containing a position and orientation, a Cartesian Location also has an optional
pointer to a reference frame object (RefFrame).   If RefFrame is specified, the Cartesian position
and orientation is understood to be relative to the reference frame. When such a Location is
specified as a destination for a robot motion, GPL automatically combines the Cartesian
Location’s position and orientation with the reference frame to compute the absolute coordinates
for the robot’s destination.

The use of relative coordinates and reference frames is a very powerful technique since it allows
related positions and orientations to be moved as a group.  For example, all of the IC chips on a PC
board or all of the sample tubes in a tray can be defined relative to a reference frame.  If the PC
board or the tray is misaligned, the position and orientation of the reference frame can be updated
and the absolute values of all of the associated Locations will automatically be corrected as well.

For even greater flexibility, a reference frame can itself be defined relative to another reference
frame. 

An Angles Location stores a robot position as a set of axes position values.  This is the traditional
method of representing robot locations and was utilized extensively prior to the introduction of
kinematic models.  It consists of one axis position value for each degree-of-freedom of the robot.

This method has the benefit of fully and uniquely defining a position of a robot.  However, there are
several disadvantages of this method relative to the Cartesian representation.  For one, if the robot
has serial linkages or rotary axes for determining the position of the tool, it is often difficult to
intuitively determine how to change the axes positions to effect a desired change in the position or
orientation of the robot’s tool.  Secondly, the use of axes positions makes application programs non-

Copyright © 2024, Brooks Automation 57



12. Motion- and Controller-Related
Classes Guidance Programming Language

Location Class and Objects Part Number: 609644 Rev. A

portable between robots with different geometries or even the same geometry but different sizes. 
Finally, while this representation is sufficient for describing the position and orientation or a robot, it
cannot be easily used to define arbitrary positions and orientations of parts and part relationships
within the workspace.

The storage of axes positions has been included for completeness and does have its uses. 
However, it is recommended that Cartesian Locations be applied whenever possible.

In order to distinguish the type of data stored in a Location, a “Type” property is provided.  This
indicates if the object is an Angles Location or a Cartesian Location. If the Location is a
Cartesian type, it can also have an optional pointer to a RefFrame Object.

For most common operations that require the position and orientation of a Location Object, the
data of interest is referred to the “total position” or “position” of the Location.  The “total position” or
“position” is synonymous with the following:

For Cartesian Locations without a reference frame, the position and orientation stored in the
Location.

For Cartesian Locations with a reference frame, the combination of the position and orientation
stored in the Location with the position and orientation of its reference frame.

For Angles Locations, the stored axes positions.

For some computations, it is convenient to access the Cartesian position and orientation stored in a
Cartesian Location while ignoring the optional reference frame.  To distinguish this value from the
“total position”, this data is referred to as the Location’s “position with respect to the reference
frame” (PosWrtRef) whether or not a reference frame is specified.  The PosWrtRef property is not
meaningful for Angles Locations.

Throughout GPL, Cartesian positions and orientations are internally stored as a sparse 4 by 4
matrix called a “homogeneous transformation”.  This matrix represents the three positional degrees-
of-freedom and the three rotational degrees-of-freedom needed to fully specify a robot or part
position and orientation in Cartesian coordinates.  Homogeneous transforms have several
computational advantages and are used to store the “total position” of Cartesian Locations,
PosWrtRef values, reference frames positions and orientations, and during Cartesian Location
position and orientation computations.  However, while this representation has computational
benefits, entering the values for the elements of a 4 by 4 homogeneous transformation matrix is not
very convenient. 

To simplify data entry, transformation values are converted to X, Y, and Z position displacement
components and three “Euler angles”.  The three Euler angles consist of a rotation about the Z-axis,
followed by a rotation about the new Y-axis, followed by a rotation about the new Z-axis.  This set of
displacements and angles is often referred to as X, Y, Z, Yaw, Pitch, and Roll.  In general terms, if
you are standing up straight and looking at the horizon, the Yaw angle is the amount that you rotate
to look left and right along the horizon.  The Pitch angle defines if you subsequently tilt your head to
look up into the sky or down into the ground.  The Roll angle defines a final rotation of your head

58 Copyright © 2024, Brooks Automation



Brooks Automation 12. Motion- and Controller-Related Classes
Part Number: 609644 Rev. A Location Class and Objects

about its new vertical axis.  The X, Y, and Z values are in units of millimeters and the Yaw, Pitch, and
Roll are in units of degrees.

Since flexible automation must be able to alter a robot’s actions in order to accommodate process
variations, one of the most important features of the GPL system is the ability to efficiently and
easily mathematically manipulate position and orientation data.  In the case of AnglesLocations,
this capability is limited to providing the ability to change individual axes position values.  However,
for Cartesian Locations, a much more powerful mathematics is provided. 

As mentioned above, each Cartesian Location can have a reference frame or series of reference
frames associated with it.  These reference frames can not only translate but also rotate the base
coordinate system in which the positions are defined.  This allows arbitrary 6 degree-of-freedom
adjustments to be applied to correct for part and process tolerances and variations.

More generally, GPL includes several methods that can be used to combine the positions and
orientations of Cartesian Locations and reference frames.  Reference frames are a super-set of
Cartesian Locations. So, in the following paragraphs, the comments concerning Locations
apply to reference frames as well.

When we combine multiple Location positions and orientations, it is easiest to think of Location
Objects as representing a change in position and orientation with respect to a coordinate system,
which in turn defines a new coordinate system.  So, if we have a Location A, A can be thought of as
defining a new coordinate system relative to its base coordinate system.  If we combine A with a
second Location B, the change in position and orientation of B is interpreted with respect to the
new coordinate system defined by A.  If a third Location C is added, the combination of A, B, and C
can be computed by interpreting the change in position and orientation of C with respect to the
coordinate system generated by combining A and B.

As a specific example, let’s consider the simple case without rotations where Location A has a X, Y,
Z value of (10,25,-40) and Location B has a X, Y, Z value of (0,5,0).  If we now combined the
values, B’s incremental displacement of 5 mm along its Y-axis should be interpreted with respect to
A’s prior translations.   The combined result would be (10,30,-40).  Now, we can see what happens if
we change A so it includes a 90-degree rotation about its Z-axis (10,25,-40,0,0,90).  In this case,
when we combine the two values, B’s base Y-axis has been rotated to point along the negative X-
axis of A’s base coordinate system.  So, the resulting combination would be (5,25,-40,0,0,90).

In addition to combining Locations, we can also eliminate the effects of Locations by computing
the “inverse” of a Location.  An inverse negates the change in position and orientation of a
Location. When we combine these negative results with other computations in the proper order,
we can unwind Location computations.

The Location Class and its Object include not only basic properties, but also extensive methods for
mathematically manipulating the positions and orientations contained with these objects.  All of
these properties and methods are described in detail in the Reference Documentation section and
are briefly summarized in Table 12-3.

Copyright © 2024, Brooks Automation 59



12. Motion- and Controller-Related
Classes Guidance Programming Language

Location Class and Objects Part Number: 609644 Rev. A

Member Type Description
location_obj.Angle Property Sets and gets a single axis position for an Angles Location.
location_obj.Angles Method Changes all of the axes positions values in an Angles Location.
location_obj.Clone Method Returns a copy of the location_obj.

location_obj.Config Property Sets and gets the bit flags that specify special robot specific location
attributes.

location_
obj.ConveyorLimit Method Returns the distance that a Location, which is defined relative to a

conveyor reference frame, is from the operating limits of the conveyor.

Location.Distance Method Returns the distance between the XYZ positions of two Cartesian
Locations.

location_obj.Here Method Modifies the “total position” of the location_obj to be equal to the current
location of a robot.

location_obj.Here3 Method Defines the "total position" of location_obj based upon the XYZ
coordinates of three specified locations.

location_obj.Inverse Method Returns the inverse of the “total position” of the Cartesian location_obj.

location_obj.Kinesol Method Returns a Cartesian Location equivalent to an Angles Location for a
specific kinematic model or vise versa.

location_obj.Mul Method Returns the result of combining the “total position” of location_obj with the
“total position” of another Cartesian Location.

location_
obj.Normalize Method Corrects the value of the PosWrtRef of a Cartesian Location for any

mathematical inconsistencies in the value.
location_obj.Pitch Property Sets and gets the Pitch angle of the PosWrtRef of a Cartesian Location.
location_obj.Pos Property Sets and gets the “total position” of the location_obj.
location_
obj.PosWrtRef Property Sets and gets the PosWrtRef of a Cartesian Location.

location_obj.Roll Property Sets and gets the Roll angle of the PosWrtRef of a Cartesian Location.

location_obj.Text Property Sets and gets a String value not used by GPL. Available for general use
by applications.

location_obj.Type Property Sets and gets the Type specification.

location_obj.X Property Sets and gets the X position value of the PosWrtRef of a Cartesian
Location.

location_obj.XYZ Method Changes the X, Y, Z, Yaw, Pitch, and Roll values of the PosWrtRef of a
Cartesian Location.

location_obj.XYZInc Method Increments the X, Y, and Z values of the PosWrtRef of a Cartesian
Location.

Location.XYZValue Method Returns a Cartesian Location with a "total position" equal to specified X,
Y, Z, Yaw, Pitch, and Roll coordinates.

location_obj.Y Property Sets and gets the Y position value of the PosWrtRef of a Cartesian
Location.

location_obj.Yaw Property Sets and gets the Yaw angle of the PosWrtRef of a Cartesian Location.

location_obj.Z Property Sets and gets the Z position value of the PosWrtRef of a Cartesian
Location.

location_
obj.ZClearance Property Sets and gets the distance along the Z-axis that defines the safe approach

position to the Location.

location_obj.ZWorld Property Sets and gets the flag that indicates if the approach distance is measured
along the Tool or World Z coordinate axis.

Table 12-3: Location Class and Object

60 Copyright © 2024, Brooks Automation



Brooks Automation 12. Motion- and Controller-Related Classes
Part Number: 609644 Rev. A Profile Class and Objects

Profile Class and Objects

In order to move the robot in the standard position control mode, a programmust specify the
destination for the motion and some trajectory parameters.  The trajectory parameters include
values that specify how fast the robot is to move and what type of path the robot should traverse.  As
previously described, Location Objects are utilized to specify robot and part positions and
orientations.  In GPL, the trajectory parameters are captured inObjects that are instances of the
Profile Class.

A Profile Object defines a motion’s peak speed, peak acceleration and deceleration, s-curve
profile parameters, type of path (i.e. straight line or interpolated in joint angles), and a constraint
specification used to define if the robot should stop at the end of the motion and when the robot is
close enough to the final destination to be considered “in position”.

While a program can have a unique Profile Object for each motion, it is often desirable to create
several, generic Profile Objects that can be repeatedly used throughout a project for similar types
of motions.  For example, you might create one Profile for retracting the robot, a second Profile for
moving the robot at high speeds between intermediate (via) points, and a third Profile for final
positioning of parts.  The repeated use of generic profiles often simplifies performance tuning an
application.

All of the properties and methods for the Profile Class are described in detail in the Reference
Documentation section.  Table 12-4 summarizes this information.

Member Type Description
profile_
obj.Speed Property Sets and gets the peak motion speed specified as a percentage of the nominal

speed.
profile_
obj.Speed2 Property Sets and gets the secondary peak motion speed specification as a percentage of

their nominal speeds for selected axes during Cartesian motions.
profile_
obj.Accel Property Sets and gets the peak motion acceleration specified as a percentage of the

nominal acceleration.
profile_
obj.Decel Property Sets and gets the peak motion deceleration specified as a percentage of the

nominal deceleration.
profile_
obj
.AccelRamp

Property Sets and gets the duration for ramping up to the peak acceleration, specified in
seconds.

profile_
obj
.DecelRamp

Property Sets and gets the duration for ramping up to the peak deceleration, specified in
seconds.

profile_
obj.Straight Property Sets and gets the Boolean indicating if the robot is to follow a straight-line path.

profile_
obj.InRange Property

Sets and gets the constraint value that specifies if the robot should be stopped at
the end of the motion and when the robot is close enough to the final destination
to be considered at its final position.

profile_
obj.Text Property Sets and gets a String value not used by GPL. Available for general use by

applications.
profile_
obj.Clone Method Method that returns a copy of the profile_obj.

Table 12-4: Profile Class, Summary

Copyright © 2024, Brooks Automation 61



12. Motion- and Controller-Related
Classes Guidance Programming Language

Move Class Part Number: 609644 Rev. A

Move Class

The globalMoveClass provides the methods for commanding the robot to perform a motion.  The
most fundamental position-controlled motion method is:

Move.Loc (Location1,Profile1) 

This executes a single motion segment and moves the robot to the absolute position and orientation
specified by Location1 using the performance parameters specified by Profile1.  More complex,
multi-segment motions can be constructed by executing severalMovemethods in rapid
succession.  If desired, the system will automatically blend motion segments together into a single
“continuous path” that executes several segments in succession before bringing the robot to a stop. 
This method can significantly improve cycle times of even simple applications.  Each motion
segment can either move the robot’s tool tip along a Cartesian straight-line path, a circular
interpolated path or a joint-interpolated path.  Straight-line and circular paths are made possible by
the installation of “kinematic modules” that provide GPL with a knowledge of the robot’s geometry.

As an ease-of-use feature, severalMovemethods are provided for defining the destination of a
motion.  For example, methods are provided for specifying if the robot is to move directly to a
destination, move to the clearance position of a destination, move relative to the previous
destination, or move a single axis.

In addition to position-controlled motions, the system also supports velocity and torque controlled
motions.

In order for a robot motion to be executed, the following conditions must be satisfied:

1. High power for the amplifiers and motors must be enabled (see Controller.PowerEnabled).

2. The motors must be commutated.  This normally happens automatically and is performed during the

PowerEnable or the homing sequence.

3. In the standard case where the robot is to be position controlled, the robot axes must be homed each

time the controller is restarted (see Robot.HomeAll).  Homing reestablishes the zero position for

each axes so that the robot can repeat a previously taught motion.

4. The robot must be attached to the thread (see Robot.Attached).  Attaching ensures that only a

single thread can issue motion commands to a robot.

For general information on the system’s motion control capabilities, please see the introductory
section on “Motion Control”.

All of the methods for theMove Class are described in detail in the Reference Documentation
section. Table 12-5 summarizes this information.

62 Copyright © 2024, Brooks Automation



Brooks Automation 12. Motion- and Controller-Related Classes
Part Number: 609644 Rev. A RefFrame Class and Objects

Member Type Description

Move.Approach Method Moves to the clearance position for a specified Location.

Move.Arc Method Moves the tool tip of the robot along an arc path defined by three
Locations.

Move.Circle Method Moves the tool tip of the robot around a complete circle defined by
three Locations.

Move.Delay Method Pauses execution of motions for a specified period of time, in
seconds.

Move.Extra Method Moves extra, independent axes during the next motion to a
Cartesian Location.

Move.ForceOverlap Method

Bypasses the system's normal motion blending features and
defines how the execution of two sequential motions are to be
overlapped.  Can also automatically limit the rounding of corners
between sequential Cartesian motions.

Move.Loc Method Basic instruction to move to a specified destination Location.
Move.OneAxis Method Convenience method to move a single axis of a robot.

Move.Rel Method Moves to a Location that is relative to the destination of the
previous motion.

Move.SetJogCommand Method Sets or changes the specific mode, axis and speed during jog
(manual) control mode.

Move.SetRealTimeMod Method Sets the changes in position and orientation for the Real-time
Trajectory Modification mode.

Move.SetSpeeds Method Sets new target speeds and accelerations for all axes during
velocity control mode.

Move.SetTorques Method Sets new target torque output levels for all motors in torque control
mode.

Move.StartJogMode Method Initiates execution of jog (manual) control mode.

Move.StartRealTimeMod Method Initiates a trajectory mode that permits a GPL program to
dynamically modify a planned path while the path is being executed.

Move.StartSpeedDAC Method Starts / stops automatic control of an analog output based upon a
robot's tool tip speed.

Move.StartTorqueCntrl Method Initiates execution of torque control mode for one or more motors.

Move.StartVelocityCntrl Method Switches all axes of a robot to velocity control mode in place of
position control mode.

Move.StopSpecialModes Method Terminates execution of any active special trajectory control modes.

Move.Trigger Method
Primes the system to automatically assert a digital output signal or a
thread event at a prescribed trigger position during the next or
current motion.

Move.WaitForEOM Method Pauses GPL program execution until the current motion is
completed.

Table 12-5: Move Class, Summary

RefFrame Class and Objects

TheObjects of the RefFrame Class define robot and part reference frames. As previously
described, one or more Cartesian Locations can be defined relative to a RefFrame. If the position
or orientation of the RefFrame is subsequently modified, the absolute (or “total) position and
orientation of all associated Cartesian Locations are automatically adjusted and will move with the
reference frame.

Copyright © 2024, Brooks Automation 63



12. Motion- and Controller-Related
Classes Guidance Programming Language

RefFrame Class and Objects Part Number: 609644 Rev. A

For example, a RefFrame Object, tray_ref, can be created that defines the position and orientation
of a tray of parts. The Location of each part on the tray can then be defined with respect to tray_ref.
If the tray and its parts move in unison, the position and orientation of tray_ref can be updated and
the total position of all of the part Locations will be automatically adjusted and move with the
reference frame.

In addition to defining a Location with respect to a RefFrame, a RefFrame can be defined with
respect to another RefFrame. In the example above, if an array of trays is organized into a two
dimensional grid, a second “pallet” RefFrame, pallet_ref, can be defined to represent the grid of
trays. tray_ref can then be defined with respect to pallet_ref. Each time the pallet_ref is advanced to
the next tray, the tray_ref position will be modified as well as all of the part Locations that are
defined with respect to tray_ref.

To define a Location with respect to a reference frame, you simply refer to the reference frame via
the RefFrame property of a Cartesian Location. For example,

Dim part1 As New Location   ' part1 defaults to Cartesian Loc
Dim tray_ref As New RefFrame
part1.RefFrame = tray_ref   ' part1 defined wrt tray_ref

To simplify the use of reference frames, several different types of RefFrames exist and more will be
added in the future. The common members of all RefFrame Objects are summarized in Table 12-
8. For detailed information on these members and those of the specific types of reference frames,
please consult the GPL Dictionary Pages.

Member Type Description

 refframe_
obj.Type Property Sets and gets the type of the reference frame.

 refframe_
obj.Loc Property

Sets and gets the Location Object that is an integral part of the reference frame. The
use of Loc varies for different types of reference frames although Loc.RefFrame always
defines the next reference frame if RefFrame_obj is itself relative to another reference
frame.

 refframe_
obj.Pos Method Returns the absolute (“total”) position and orientation for any type of reference frame

object.
 refframe_
obj
.PosWrtRef

Method Returns the position for any type of reference frame while ignoring any further reference
frames.

 refframe_
obj.Text Property Sets and gets a String value not used by GPL. Available for general use by applications.

Table 12-6: RefFrame Objects

Basic Reference Frame

The basic type of RefFrame simply stores the position and orientation of the reference frame in the
Loc Location. The Loc.Pos property defines the position and orientation of the reference frame.

64 Copyright © 2024, Brooks Automation



Brooks Automation 12. Motion- and Controller-Related Classes
Part Number: 609644 Rev. A RefFrame Class and Objects

The GPL project is responsible for defining and updating the Loc.Pos value to reflect the current
reference frame value.

Dim loc1 As New Location       ' loc1 set to Cartesian Loc
Dim ref1 As New RefFrame
loc1.RefFrame = ref1             ' loc1 with respect to ref1
ref1.Loc.XYZ(10,20,30,0,180,20)  ' Set ref1 Pos

In order to define a basic reference frame with respect to another reference frame, the
Loc.RefFrame value must reference the next reference frame.

For a basic reference frame, it is possible to use Loc.Pos and Loc.PosWrtRef to read the total
position and relative position of the reference frame. However, it is generally a better practice to
read the Pos and PosWrtRef of the RefFrame instead. RefFrame_obj.Pos and RefFrame_
obj.PosWrtRef will return the current values for any type of RefFrame.

The RefFramemembers that have special meaning for the basic type of reference frame are briefly
described in Table 12-7.

Member Type Description

refframe_
obj.Type Property Set to 0 to indicate a basic reference frame.

refframe_
obj.Loc Property Loc.Pos is set equal to the position and orientation of the reference frame by a GPL

procedure.

Table 12-7: RefFrame, Special Meaning for Basic Reference Frame Type

Pallet Reference Frame

A pallet reference frame defines a one, two, or three-dimensional rectangular grid of positions that
are sequentially indexed. For example, this type of reference frame can be utilized to represent a
row of parts being fed, an array of test samples organized into a two dimensional grid or a three
dimension pallet of shipping boxes. Once a pallet RefFrame has been defined, you can advance to
the next position in the pallet by simply invoking the pallet’s “PalletNextPos” method.

The position of the first item (i.e. index 1,1,1) is defined by the X, Y, and Z displacements of Loc.
The directions of the X, Y, and Z axes of Loc define the direction for each row, column, and layer of
the pallet, respectively.

The distance between each item in a row, column, or layer is defined by the “PalletPitch” in each
dimension. The maximum number of elements in each row, column, or layer can also be specified.
Setting the maximum index to 1 indicates that this corresponding dimension is not incremented.

The order in which GPL indexes along rows, columns, and layers can also be specified. For
example, when PalletNextPos is executed, the default is to step along the row first, then along

Copyright © 2024, Brooks Automation 65



12. Motion- and Controller-Related
Classes Guidance Programming Language

RefFrame Class and Objects Part Number: 609644 Rev. A

columns, and finally to the next layer. However, you can change the order to any combination. So,
you could step by layers first, rows second, and then columns if you so choose.

In addition to using PalletNextPos to increment to the next pallet element, the pallet element can be
directly specified by the PalletIndex property or the PalletRowColLaymethod. When a pallet
indexes beyond the final element, it automatically wraps back to the first element.

The RefFramemembers that have special meaning for the pallet type of reference frame are
described in Table 12-8.

Member Type Description

refframe_
obj.Type Property Set to 1 to indicate a pallet reference frame.

refframe_
obj.Loc Property

Loc.X, Y, and Z define the position of the first row, column and layer. The
orientation of the X, Y, and Z axes of Loc define the direction for each row, column,
and layer respectively.

refframe_
obj.PalletIndex Property Sets and gets the index for the next position along the pallet row, column, or layer (1

to n).
refframe_
obj.
PalletMaxIndex

Property Sets and gets the maximum position index along the pallet row, column, or layer (1 to
n).

refframe_
obj.PalletNextPos Method Advances to the next pallet position.

refframe_
obj.PalletOrder Property Sets and gets the parameter that specifies the order in which PlalletNextPos

indexes along the row, column, and layer indices.
refframe_
obj.PalletPitch Property Sets and gets the step size for advancing along each row, column, or layer.

refframe_
obj
.
PalletRowColLay

Method Sets the next pallet position row, column, and layer indices in a single instruction.

Table 12-8: Special Meaning for Pallet Type of Reference Frame

Conveyor Reference Frame

Conveyor Tracking is a software option that permits Locations to be defined relative to a conveyor
belt.  When the robot moves to such positions, the system automatically adjusts the robot's motions
to account for the actual position and speed of the belt.  For example, this option allows an
application that picks parts from one conveyor and places them on a second conveyor to be taught
when the conveyors are stationary.  Then, during the actual execution, the program will be
automatically adjusted by the system to perform the same operation even when the conveyors are
moving.

From a programming point of view, conveyor reference frames provide the means for implementing
a conveyor tracking program.  For each conveyor belt, one or more conveyor RefFrame objects

66 Copyright © 2024, Brooks Automation



Brooks Automation 12. Motion- and Controller-Related Classes
Part Number: 609644 Rev. A Controller Class

must be defined.  Each such object specifies the conveyor that is being referenced and provides the
data need by the system to evaluate the instantaneous position of the belt. 

The Pos value of a conveyor reference frame always yields the instantaneous position of a
conveyor and its X-axis always points along the nominal direction of travel of the belt.  Any Location
that is defined with respect to a conveyor RefFrame automatically moves with the conveyor belt.

The RefFramemembers that are defined for a conveyor reference frame are described in Table 12-
9.  For more information on the Conveyor Tracking option, please see the Controller Software >
Introduction to the Software > Motion Control > Conveyor Tracking section of the PreciseFlex
Library.

Member Type Description

refframe_
obj.Type Property Set to 2 to indicate a conveyor reference frame.

refframe_obj.Loc Property Not used.  Conveyor reference frames cannot be defined with respect to any
other reference frame.

refframe_
obj.PosWrtRef Method Returns the position of the "nominal" transformation for the associated conveyor

robot.
refframe_
obj.
ConveyorOffset

Property Sets or gets the property that specifies the zero position of the conveyor belt's
encoder.

refframe_
obj.
ConveyorRobot

Property Sets or gets the property that specifies the robot module that is interfaced to the belt
encoder and contains the data that defines the conveyor.

Table 12-9: Conveyor Type of Reference Frame

Controller Class

The global ControllerClass provides a means for GPL programs to access a number of system
wide features and facilities of the Guidance Controller System, e.g. High Power control, E-Stop
logic, Configuration Database values, etc. These capabilities are represented as properties and
methods of the Controller Class. Since this class is global, it does not have any properties or fields
that have values that are local to a specific routine or program scope. So, the ControllerClass can
be referenced directly without the need for creating instances of ControllerObjects. For example,
to enable high power to the amplifies for non-Category 3 (CAT-3) safe systems, the following GPL
statement could be used:

Controller.PowerEnabled = True

In this instruction, “Controller” refers to the global ControllerClass and “EnablePower” is a
property of this class. Likewise, if we wish to test if high power is currently enabled, the following
instructions could be utilized:

Copyright © 2024, Brooks Automation 67



12. Motion- and Controller-Related
Classes Guidance Programming Language

Controller Class Part Number: 609644 Rev. A

If (Controller.PowerEnabled) Then
:

End If

Of special interest are the SystemMessage, ShowDialog and ShowDialogMCPmethods of this
class. These methods allow GPL programs to easily output information to the operator and prompt
for simple responses. For the first two methods, the output and input appear on the web page that
displays the Operator Control Panel. For the third method, the output and input are performed via
the PreciseFlex™ Hardware Manual Control Pendant. In the following example, text is output to the
system message log displayed on the Operator Control Panel and then displays a pop-up to prompt
for a "Yes" or "No" answer.

Dim button As Integer
Controller.SystemMessage("Sample output to Operator Control
Panel")
Controller.ShowDialog("Yes,No","Do you like this pop-up?", but-
ton)
Controller.SystemMessage("Operator pressed button " & CStr(but-
ton))

All of the properties and methods for the ControllerClass are discussed in detail in the Reference
Documentation section. Table 12-10 summarizes the members of the class.

Member Type Description

Controller.Command Method Executes a console command and returns any output as a String value.

Controller.ErrorLog Property Returns an entry from the system Error Log as a String value or clears
the Error Log.

Controller.Load Method Loads a GPL project into memory and compiles it in preparation for
execution.

Controller.PDb Property Sets and gets any accessible value in the configuration parameter
database.

Controller.PDbNum Property Optimized means to set and get numeric values in the configuration
parameter database.

Controller.PowerEnabled Property Sends a request to either turn on or off high (motor) power to the amplifier.
Returns whether high power is on or off.

Controller.PowerState Property Returns the current state of the high power sequence.

Controller.RecordButton Property Sets and gets the latched Boolean value that indicates if the hardware
MCP RECORD button has been pressed.

Controller.ShowDialog Method Displays a pop-up dialog box on the web Operator Control Panel.

Controller.ShowDialogMCP Method Displays a pop-up dialog box on the LCD display of the PreciseFlex™
Hardware Manual Control Pendant.

Controller.SleepTick Method Delays further execution of a thread for a specified number of Trajectory
Generator periods.

Controller.SoftEStop Property Sets and gets the Boolean flag that triggers a Soft E-Stop.

Table 12-10: ControllerClass, Summary

68 Copyright © 2024, Brooks Automation



Brooks Automation 12. Motion- and Controller-Related Classes
Part Number: 609644 Rev. A Robot Class

Member Type Description

Controller.SystemMessage Method Enters a message into the GPL systemmessage log that is displayed on
the web Operator Control Panel.

Controller.SystemSpeed Property Sets and gets the property that can reduce the speed of all robot motions.
Controller.Tick Property Returns the execution repetition period for the Trajectory Generator.

Controller.Timer Property Returns the value of the controller’s microsecond clock in units of
seconds.

Controller.Unload Method Unloads an idle GPL project from memory.

Robot Class

The global Robot Class provides a means for GPL programs to access functions and properties
specific to each robot configured in the system. The Robot is provided as a global class to simplify
its access since many systems have only a single robot and many applications are written to access
and control the robot from a single thread.  Since this class is global, it does not have any properties
or fields that have values that are local to a specific routine or program scope.  So, the Robot Class
can be referenced directly without the need for creating instances of RobotObjects. 

The Robot Class provides properties and methods for reading the current position of a robot,
initiating a homing sequence from a program, forcing a rapid deceleration of any in-process motion,
retrieving data from the trajectory generator for the robot, setting and getting the robot’s base and
tool offsets, etc.

The most important operations of the Robot Class are to associate a specific robot with a specific
thread and to give exclusive control of a robot to a thread. Most read-only robot operations require
that a statement either explicitly specify a robot or have a previously Selected robot.  For example,
to read the current position of a robot, the Selected robot will be accessed if no robot is specified. 
On the other hand, in order to control or move a robot, a thread must first be Attached to a robot in
order to gain exclusive access to it.  Typically, if a project is intended to control a robot, the GPL
software development environment can be configured to automatically generate the statements to
ensure the robot will be Attached at the start of program execution and un-Attached when the
program is terminated or pauses execution.

All of the properties and methods for the Robot Class are discussed in detail in the Reference
Documentation section. Table 12-11 summarizes the members of the class.

Member Type Description

Robot.Attached Property Sets and gets the number of the robot that is exclusively controlled
by a thread.

Robot.Base Property Sets and gets the position and orientation offset for the base of the
robot.

Robot.CartMode Property Gets an Integer that contains flag bits that indicate if any special
Cartesian trajectory modes are active.

Robot.Custom Property Sets and gets elements of a parameter array whose interpretation
is specific to each kinematic module.

Table 12-11: Robot Class, Summary

Copyright © 2024, Brooks Automation 69



12. Motion- and Controller-Related
Classes Guidance Programming Language

Latch Class Part Number: 609644 Rev. A

Member Type Description

Robot.DefLinComp Method Defines internal table of motor encoder "Linearity compensation"
correction values that are automatically applied to encoder values.

Robot.Dest Property Gets the Cartesian Location that is the final destination for the
previously executed motion.

Robot.DestAngles Property Gets the Angles Location that is the final destination for the
previously execution motion.

Robot.Home Method Homes the Attached robot to establish the reference positions for
each axes.

Robot.HomeAll Method Homes all robots to establish the reference positions for each of
their axes.

Robot.JointToMotor Method Converts an array of axis joint angles (in degrees or millimeters) to
an equivalent array of motor positions (in encoder counts).

Robot.LastProfile Property
Returns a Profile Object whose properties are equal to those of
the currently executing motion or the last executed motion if no
motion is active.

Robot.MotorTempStatus Property Returns a code that indicates the temperature status of a motor.

Robot.MotorToJoint Method Converts an array of motor positions (in encoder counts) to an
equivalent array of axis joint angles (in degrees or millimeters).

Robot.Payload Property Asserts or retrieves the last asserted value that specifies the mass
of the payload being carried by the robot.

Robot.RapidDecel Property Sets the Boolean flag that forces any in-process motion for a robot
to be rapidly decelerated to a stop.

Robot.RealTimeModAcm Property
Returns a Cartesian Location whose value is equal to the
accumulated modifications generated by the Real-time Trajectory
Modification mode.

Robot.RestartBase Property Gets the position and orientation offset for the base of the robot
that was set when the controller was restarted.

Robot.RestartTool Property Gets the position and orientation offset for the tool or gripper of the
robot that was set when the controller was restarted.

Robot.Selected Property Sets and gets the number of the robot that will be accessed for
read-only operations by default.

Robot.Source Property Returns a Cartesian Location whose value is equal to the initial
position and orientation of the previously executed motion.

Robot.SourceAngles Property Returns an Angles Location whose value is equal to the initial
axes positions of the previously executed motion.

Robot.SpeedAngles Property Returns an Angles Location whose components contain the
instantaneous speed of each axis.

Robot.Tool Property Sets and gets the position and orientation offset for the tool or
gripper of the robot.

Robot.TrajState Property Gets the Integer that indicates the current state of the trajectory
generator for a given robot.

Robot.Where Property Gets a Cartesian Location whose value indicates the current
position and orientation of a robot.

Robot.WhereAngles Property Gets an Angles Location whose value indicates the current
position of each axes of a robot.

Latch Class

The global Latch Class provides a means for GPL procedures to receive the results of latches
generated by digital input signals configured to trigger latching. These latch results allow a robot or
belt position to be captured with high accuracy when a digital input value changes.

70 Copyright © 2024, Brooks Automation



Brooks Automation 12. Motion- and Controller-Related Classes
Part Number: 609644 Rev. A Latch Class

The Latch Class defines Latch Objects that contain the time when the latch occurred and the
robot axis positions at that time. This class includes methods and properties for accessing the
queue of latch results, and for accessing the data in the results themselves.

Each robot has a single independent queue of latch result objects, generated when a configured
latch signal changes state. The queue is kept in order of time, with the oldest events first. Conveyor
belts are a special case of robots, normally configured as "encoder only" robots. Multiple belts or
robots may be latched independently.

For a general discussion of Latches, please see the Controller Software > Introduction To The
Software > Communications > Digital Inputs and Outputs > Latch Inputs section of the
PreciseFlex Library.

The methods for this class are summarized in Table 12-12:

Member Type Description

latch_object.Angle Property Returns the latched value of the specified axis angle. Avoids creating a Location
object.

Latch.Count Shared
Property Returns the number of latch results pending for a robot or conveyor belt.

latch_
object.ErrorCode Property Returns the error code from a latch object. 0 means no error.

Latch.Flush Shared
Method Flushes all latch results pending for a robot or conveyor belt.

latch_
object.Location Method Returns a Location object containing the latched position, as a Cartesian value or

a set of angles.
latch_
object.RawTime Property (Hidden Property) Returns the hardware time register value when the latch

occurred as a Double value. Used for testing.

Latch.Result Shared
Method

Removes the next latch result from the queue for a robot or belt and returns it as a
Latch object. Returns Nothing if the queue is empty. Throws an exception if a
result was lost due to an overflow.

latch_object.Signal Property Returns the number of the digital input signal that generated the latch.

Latch.ThreadEvent SharedProperty
Associates a thread event with a robot or belt. The thread event gets set if the latch
queue contains latch results or when new latch results are added.

latch_
object.Timestamp Property Returns the timestamp when the latch occurred as a Double value, consistent with

the Controller.Timer property.

Table 12-12: Latch Class, Methods

Copyright © 2024, Brooks Automation 71



13. Networking Communications Guidance Programming Language
Networking Communications Overview Part Number: 609644 Rev. A

13. Networking Communications

Networking Communications Overview

The following pages explain how to communicate across the Ethernet network using GPL. They
provide a summary of the classes involved and examples of how to use them. For additional details
on specific methods and properties, see the GPL Dictionary.

GPL includes a number of built-in classes to allow network communications between GPL and other
systems using TCP or UDP. They are similar to classes found in Visual Basic, and use concepts
from Unix and Linux network stacks. These pages are not intended to be a complete tutorial on
network communications, but should provide sufficient information for simple applications.

Networking Definitions and Classes

Table 13-1 summarizes the terms and abbreviations used by the network software and this
documentation:

Concept Description

Client
A TCP or UDP Endpoint. A TCP Client connects to a Server and then issues requests to that Server.
Normally a TCP Client does not receive data except in response to a request. A UDP Client sends to
and receives from other UDP clients.

Datagram A unit of data that includes source and destination Endpoint information.
Endpoint The source or destination for a datagram normally specified as an IP Address and Port.
IP Internet Protocol - A low-level datagram protocol that is the basis for both TCP and UDP.

IP Address
A 32-bit number that identifies a particular network and computer on that network. Normally written
as four decimal numbers, each of which range from 0 to 255, separated by periods. For example:
192.168.0.1

Port
A number from 0 to 65536 that identifies a process or protocol on a networked computer. Some
ports are pre-assigned to particular protocols. For example, port 21 is normally used by a FTP
server.

Table 13-1: Concept Definitions

72 Copyright © 2024, Brooks Automation



Brooks Automation 13. Networking Communications
Part Number: 609644 Rev. A Networking Definitions and Classes

Concept Description

Server
A TCP Endpoint that accepts connections from a Client and services requests from a Client.
Normally a Server does not initiate I/O but simply responds to requests. A UDP-based server uses
the same methods as a client since there is no connection established.

Socket AnObject that holds connection information for network I/O. Various methods associate Endpoints
with Sockets.

TCP Transmission Control Protocol - A connection-based protocol that sends reliable Datagrams
between Client and Server Endpoints. Messages are guaranteed to be delivered in order.

UDP
User Datagram Protocol – A connection-less protocol that sends Datagrams between two
endpoints, without any guarantee of delivery or ordering. UDP is generally faster than TCP, but not
as reliable.

GPL supports TCP Server and Client connections, as well as sending or receiving UDP datagrams.
Table 13-2 summarizes the classes for network I/O.

Networking
Class Description

IPEndPoint Objects of this class describe IP Endpoints.

Socket Objects of this class correspond to local network Endpoints. Most network I/O operations are
methods of the Socket class.

TcpClient Objects of this class correspond to TCP Clients that can request connections to a TCP Server.

TcpListener Objects of this class correspond to TCP Servers that can accept connection requests from TCP
clients.

UdpClient Objects of this class correspond to UDP Endpoints. They can exchange UDP Datagrams with
other UDP Endpoints.

Table 13-2: Networking Class Definitions

Table 13-3 through Table 13-7 summarize the methods and properties for each of the
classes.  Each of these properties and methods is described in detail in the GPL Dictionary
contained in the Software Reference section of the PreciseFlex Library.

IPEndPoint
Member Type Description

New IPEndPoint Constructor
Method

Creates an Endpoint and allows the IP Address and Port to be
specified.

ipendpoint_obj.IPAddress    Property Sets or gets the IP Address of an Endpoint.
ipendpoint_obj.Port Property Sets or gets the Port of an Endpoint.

Table 13-3: IPEndPoint Member Definitions

Copyright © 2024, Brooks Automation 73



13. Networking Communications Guidance Programming Language
Networking Definitions and Classes Part Number: 609644 Rev. A

Socket
Member Type Description

socket_
obj.Available Property     Gets the number of data bytes currently available to receive from a Socket.

socket_
obj.Blocking Property Sets or gets the blocking mode for a Socket. If True, the Socket blocks.  If False, it

does not block.
socket_obj.Close Method Closes any connections associated with a Socket.
socket_
obj.Connect Method Requests a TCP Client connection with a remote TCP Server.

socket_
obj.KeepAlive Property Sets or gets the flag that controls whether a keep-alive message is automatically

transmitted over the current TCP connection.
socket_obj.Receive Method Receives a datagram from an open TCP connection.
socket_
obj.ReceiveFrom Method Receives a datagram from an open UDP connection.

socket_
obj
.ReceiveTimeout

Property Sets or gets the receive timeout, in milliseconds, for a Socket.

socket_
obj
.RemoteEndPoint

Property Gets information about the remote end point of a TCP connection.

socket_obj.Send Method Sends a datagram on an open TCP connection.
socket_
obj.SendTimeout Property Sets or gets the send timeout, in milliseconds, for a Socket.

socket_obj.SendTo Method Sends a datagram to an open UDP connection.

Table 13-4: Socket Member Definitions

TcpClient
Member Type Description

New TcpClient Constructor
Method

Creates anObject for a TCP Client and optionally requests a
connection.

tcpclient_obj.Client Method Returns the embedded Socket for performing I/O.
tcpclient_obj.Close Method Closes a Client Socket and breaks any connection.

Table 13-5: TcpClient Member Definitions

TcpListener
Member Type Description

New TcpListener Constructor
Method Creates anObject for a TCP Server to listen for connections.

tcplistener_
obj.AcceptSocket Method Accepts a connection and returns a new Socket Object for use by the

TCP Server.

Table 13-6: TcpListener Member Definitions

74 Copyright © 2024, Brooks Automation



Brooks Automation 13. Networking Communications
Part Number: 609644 Rev. A TCP Server

TcpListener
Member Type Description

tcplistener_obj.Close Method Stops listening and closes the listener Socket.

tcplistener_obj.Pending Property True if there is a pending connection and AcceptSocket will succeed.
Otherwise False.

tcplistener_obj.Start Method Starts listening for connection requests.
tcplistener_obj.Stop Method Stops listening and closes the listener Socket. Same as Closemethod.

UdpClient
Member Type Description

New UdpClient Constructor Method Creates anObject for I/O using UDP.
udpclient_obj.Client                Method Returns the embedded Socket for performing I/O.
udpclient_obj.Close Method Closes a Socket.

Table 13-7: UdpClient Definitions

All network-related I/O is performed using Socket Objects. TcpClient, TcpListener, and
UdpClient Objects contain internal Socket Objects that are created by their constructors or
methods. These Socket Objects are returned by the methods tcpclient_object.Client, tcplistener_
object.AcceptSocket, and udpclient_object.Client. It is not useful to create a Socket object using
New.

TCP Server

A TCP server is a process that listens for connection requests and sets up connections with remote
TCP clients. The remote clients send requests to the server on the connection and receive
responses. When the connection is no longer needed, it is closed. Follow this procedure to set up a
TCP server:

Step Action

1.
Create an IPEndPoint Object for the local endpoint. ThisObject should leave the IP Address blank,
allowing any remote node to connect, but set the port to a specific number that the remote client
knows.

2. Create a TcpListener Object using this IPEndPoint Object, and start listening for a connection
request by calling the tcplistener_object.Startmethod.

Copyright © 2024, Brooks Automation 75



13. Networking Communications Guidance Programming Language
TCP Server Part Number: 609644 Rev. A

Step Action

3. Optionally poll for a connection request using the tcplistener_object.Pending property.

4.
Accept the connection request and obtain a new Socket Object by calling the tcplistener_
object.AcceptSocketmethod. If no other connections are to be serviced, stop listening for
connections by calling the tcplistener_object.Stopmethod.

5. Use socket_object.Receive and socket_object.Send to perform I/O with the remote client.

6. When finished with the connection, call socket_object.Close to close it.

TCP Server Example

In this example, a simple TCP server is created to listen for connections on port 1234. A client may
connect from anywhere. The server simply echoes back whatever the client sends. You can use a
standard Telnet application to communicate with this server.

The IPEndPoint Objectep for the remote TCP client is set to IP address “”, port 1234, indicating it
will connect with any IP address using that port. A TcpListener Object, tl, is created that listens for
connections to that endpoint. The Pendingmethod is used to poll for a connection request. When a
request arrives, the AcceptSocketmethod returns a new Socket Objectts that is used for
receiving messages and sending replies.

Public Sub Telnet
' Simple Telnet-like TCP server, listening on port 1234
' Echoes back whatever it receives
Dim ep As New IPEndPoint("," 1234) ' Accept from any IP
Dim tl As New TcpListener(ep)
Dim ts As Socket
Dim recv As String
Dim send As String
Dim ii As Integer

' Start listening and wait for a connection

tl.Start()
While Not tl.Pending()

Thread.Sleep(5000)
End While
Console.Writeline("Connection request...")
ts = tl.AcceptSocket() ' Get the socket
tl.Stop() ' Only service one

' Read from client and echo back messages

While True
ii = ts.Receive(recv, 1000)
Console.Writeline("Receive count: " & CStr(ii))
If ii = 0 Then

Exit While

76 Copyright © 2024, Brooks Automation



Brooks Automation 13. Networking Communications
Part Number: 609644 Rev. A TCP Client

End If
send = "Received: " & recv
ts.Send(send)

End While
Console.Writeline("Connection closed")
ts.Close()

End Sub

TCP Client

A TCP client is a process that establishes a connection with a remote TCP server, sends requests
to it, and receives replies. When the connection is no longer needed, it is closed. Follow this
procedure to set up a TCP client :

Step Action

1. Create an IPEndPoint Object for the remote server endpoint. ThisObject should specify the IP
address of the remote server and the port number on which the server is listening.

2.
Create a TcpClient Object using this endpoint_object. Alternately you can create a TcpClient Object
omitting the endpoint_object, and later call socket_object.Connectmethod to establish the
connection.

3. Obtain the Socket Object for this connection by calling the tcpclient_object.Clientmethod.

4. Use socket_object.Send and socket_object.Receive to perform I/O with the remote client.

5. When finished with the connection, call socket_object.Close to close it.

TCP Client Example

This example shows how to write a TCP client that connects to a TCP server.

The IPEndPoint Objectep for the remote TCP server is set to IP address 192.168.0.2, port 1234. A
TcpClient Object, tc is created that connects to that endpoint. The Socket ts is obtained from tc
and is used for sending messages and receiving replies.

Public Sub Tcp_client
' Connect to a remote TCP server at
' IP address 192.168.0.2, Port 1234

Dim ep As New IPEndPoint("192.168.0.2", 1234)
Dim tc As New TcpClient(ep)
Dim ts As Socket
Dim message As String
Dim reply As String
Dim ii As Integer

Copyright © 2024, Brooks Automation 77



13. Networking Communications Guidance Programming Language
UDP Server and Client Part Number: 609644 Rev. A

ts = tc.Client
message = "Test message" & Chr(GPL_CR) & Chr(GPL_LF)
ts.Send(message)
ts.Receive(reply, 1000)
Console.Writeline("Reply: " & reply)

For ii = 1 To 100
ts.Send(message)
ts.Receive(reply, 1000)

Next ii
Console.Writeline("Test complete")

ts.Close
End Sub

UDP Server and Client

A UDP Server and UDP client are very similar since there is no explicit connection between the two
endpoints. The difference is in how the endpoints are determined. The remote and local endpoints
are free to send or receive messages to or from any network address or port. To set up a UDP
server or client, follow this procedure:

Step Action

1.
Create an IPEndPoint Object for the local IP address and port. Normally the IP address can be left
blank. The port may be left as zero if incoming datagrams to any port should be matched, or non-zero
to match only datagrams to a specific port.

2. Create a UdpClient Object using this local IPEndPoint Object.

3. Obtain the Socket Object by calling the udpclient_object.Clientmethod.

4.
If you are initiating a request, create another IPEndPoint Object that contains the IP address and port
of the remote destination. Use this remote IPEndPoint Object with the socket_object.SendTo
method to send the datagram.

5.
If you are expecting to receive a request, create an IPEndPoint Object and pass it ByRef when
calling the socket_object.ReceiveFrommethod. The IP address and port of the remote endpoint is
automatically stored in this IPEndPoint Object. You can then use the same IPEndPoint Object in a
socket_object.SendTomethod call to respond to the endpoint that made the request.

UDP Client Example - Read File using TFTP

In this example, a UDP client is created to read a file from a TFTP server. TFTP is a standard UDP-
based file server found on many computers.

The IPEndPoint Objectsrv_ep for the remote UDP client is set to IP address “192.168.0.2”, and the
TFTP port 69. A UdpClient Object, uc, is created and the Socket Object associated with uc is
stored in us. The remainder of the I/O is performed with this Socket Object.

78 Copyright © 2024, Brooks Automation



Brooks Automation 13. Networking Communications
Part Number: 609644 Rev. A UDP Server and Client

A TFTP “file open” message is built in string out and sent to the remote UDP endpoint contained in
srv_ep using the SendTomethod. Using the ReceiveFrommethod, the reply is stored into the
string inp, and the responding remote endpoint is saved in rem_ep. The rest of the messages are
sent to rem_ep, and additional replies are checked to verify that they are also from rem_ep.

Public Sub TftpClient
' Access a TFTP server using UDP, open a file,
' and display it on the console.
Dim file As String = "testfile.txt"
Dim srv_ep As New IPEndPoint("192.168.0.2", 69)
Dim rem_ep, ep As IPEndPoint
Dim out, inp As String
Dim uc As New UdpClient()
Dim us As Socket
Dim count, op, block As Integer

us = uc.Client

' Build "open for read" command
out = Chr(0) & Chr(1) & file & Chr(0) & "octet" & Chr(0)
us.SendTo(out, 0, srv_ep)

count = us.ReceiveFrom(inp, 1500, rem_ep)
Console.Writeline("Remote ip: " & rem_ep.IPAddress & _

", port: " & CStr(rem_ep.Port))

op = Asc(inp.Substring(0,1))*256 + Asc(inp.Substring(1,1))
block = Asc(inp.Substring(2,1))*256 + Asc(inp.Substring

(3,1))
Console.Writeline("Block: " & CStr(Block))
If (count>4) Then

Console.Writeline(inp.Substring(4))
End If

While True
out = Chr(0) & Chr(4) & Chr(block/256) & Chr(block)
us.SendTo(out, 0, rem_ep)

If (count<512) Then ' End if less than 512 bytes
Exit While

End If

count = us.ReceiveFrom(inp, 1500, ep)
If (ep.IPAddress<>rem_ep.IPAddress) Or _

(ep.Port<>rem_ep.Port) Then
Console.Writeline("Address mismatch")
Exit While

End If
block = Asc(inp.Substring(2,1))*256 + _

Asc(inp.Substring(3,1))
Console.Writeline("Block: " & CStr(Block))
If (count>4) Then

Console.Writeline(inp.Substring(4))
End If

Copyright © 2024, Brooks Automation 79



13. Networking Communications Guidance Programming Language
UDP Server and Client Part Number: 609644 Rev. A

End While

Console.Writeline("Transfer complete")
us.Close

End Sub

UDP Client Example - Write File using TFTP

In this example, a UDP client is executed on the controller that writes a file to a remote TFTP server.
TFTP is a standard UDP-based file server found on many computers.

The IPEndPoint Object srv_ep is set to the IP address (192.168.0.2) and TFTP port (69) for the
remote UDP server.  An UdpClient Object, uc, is created and the Socket Object associated with
uc is stored in us. The remainder of the I/O is performed with this Socket Object.

A local file is opened for read using a StreamReader object. Then a TFTP “file write request”
message is built in string out and sent to the remote UDP endpoint contained in srv_ep using the
SendTomethod. Using the ReceiveFrommethod, the reply is stored into the string inp, and the
responding remote endpoint is saved in rem_ep. The reply opcode is checked to verify that the
server has accepted the write.

The rest of the messages are sent to rem_ep, and additional replies are checked to verify that they
are also from rem_ep.

Data is transferred from the local file to the TFTP server in blocks of 512 bytes, using a "data"
message. After each data message, the reply is read from the server and the opcode and
acknowledged block number is checked. A more elaborate client program could retransmit data
blocks if an error occurs.

Public Sub TftpWrite
' Access a TFTP server using UDP,
' Open a local file for read,
' and write the file to the TFTP server
Dim file As String = "testfile.txt"
Dim srv_ep As New IPEndPoint("192.168.0.2", 69)
Dim rem_ep, ep As IPEndPoint
Dim out, inp As String
Dim in_file As StreamReader
Dim uc As New UdpClient()
Dim us As Socket
Dim count, op, block, ack, err As Integer
Dim c As Integer
Dim ii As Integer

' Open file to read from flash
in_file = New StreamReader("/flash/" & file)

us = uc.Client

' Build "open for write" command

80 Copyright © 2024, Brooks Automation



Brooks Automation 13. Networking Communications
Part Number: 609644 Rev. A UDP Server and Client

out = Chr(0) & Chr(2) & file & Chr(0) & "octet" & Chr(0)
us.SendTo(out, 0, srv_ep)

count = us.ReceiveFrom(inp, 1500, rem_ep)
Console.Writeline("Remote ip: " & rem_ep.IPAddress & _

", port: " & CStr(rem_ep.Port))

op = Asc(inp.Substring(0,1))*256 + Asc(inp.Substring(1,1))
Console.Writeline("Open response: " & CStr(op))

' Handle error
If op <> 4 Then

If op = 5 Then
err = Asc(inp.Substring(2,1))*256 + Asc(inp.Sub-

string(3,1))
Console.Writeline("Error code: " & CStr(err))

End If
GoTo _exit

End If

block = 1

Do
out = ""
For ii = 1 To 512 ' Read block of up to 512

bytes
c = in_file.Read()
If c < 0 Then Exit For
out &= Chr(c)

Next ii

' Write data block
out = Chr(0) & Chr(3) & Chr(block/256) & Chr(block) &

out
us.SendTo(out, 0, rem_ep)

' Read reply
count = us.ReceiveFrom(inp, 1500, ep)
If (ep.IPAddress <> rem_ep.IPAddress) OrElse _

(ep.Port <> rem_ep.Port) Then
Console.Writeline("Address mismatch")
Exit Do

End If

op = Asc(inp.Substring(0,1))*256 + Asc(inp.Substring
(1,1))

If (op <> 4) Then
Console.WriteLine("Failed to write")

End If
ack = Asc(inp.Substring(2,1))*256 + Asc(inp.Substring

(3,1))
If ack <> block Then

Console.Writeline("Ack block mismatch")
End If
block += 1

Copyright © 2024, Brooks Automation 81



13. Networking Communications Guidance Programming Language
UDP Server and Client Part Number: 609644 Rev. A

Loop While c >= 0 ' Loop until end of file
Console.Writeline("Transfer complete")

_exit:
us.Close
in_file.Close()

End Sub

82 Copyright © 2024, Brooks Automation



Brooks Automation 14. MODBUS/TCP Communications
Part Number: 609644 Rev. A MODBUS/TCP Communications Overview

14. MODBUS/TCP Communications

MODBUS/TCP Communications Overview

The following pages explain how to communicate across the Ethernet network using the
MODBUS/TCP protocol. This is an "open" de facto standard protocol that is widely employed in the
industrial manufacturing environment to communicate with intelligent devices such as sensors and
instruments. It has been implemented by hundreds of vendors on thousands of different products to
communicate digital and analog I/O and register data between devices. In addition to factory
applications, MODBUS/TCP is being utilized in building, infrastructure, transportation and energy
applications.

MODBUS/TCP is layered on top of the Ethernet TCP protocol. The GPLModbus Class is provided
as a convenience to allow a GPL procedure to easily communicate with MODBUS/TCP devices
without the need to implement this protocol. This section provides a summary of the Modbus Class
and examples of how to use it. For additional details on specific methods, see the "GPL Dictionary"
in the PreciseFlex Library.

For more information on the TCP protocol, see Network Communications. For information about the
MODBUS/TCP protocol and standards, see the MODBUS-IDA website at http://www.modbus.org.

GPL operates as a Master and communicates to devices that are configured as MODBUS/TCP
slaves. In this mode, GPL supports the following MODBUS/TCP functions in Table 14-1:

Function Code Function Name Description

1 Read coils Read one or more digital outputs.
2 Read discrete inputs Read one or more digital inputs.
3 Read holding registers Read one or more holding registers.
4 Read input registers Read one or more input registers.
5 Write single coil Write a single digital output.
6 Write single register Write a single holding register.
15 Write multiple coils Write multiple digital outputs.
16 Write multiple registers Write multiple holding registers.
43, MEI type 13 Read Device Identification Read string values identifying the device.

Table 14-1: Function Code & Description

Copyright © 2024, Brooks Automation 83

http://www.modbus.org/


14. MODBUS/TCP Communications Guidance Programming Language
Modbus Class Part Number: 609644 Rev. A

In addition, a Guidance controller can be configured to operate as a MODBUS/TCP slave and accept commands from
an 3rd party MODBUS/TCP master. Please see the Communications section of the Introduction to the Software chapter
of the PreciseFlex Library for more information on this mode of operation.

Modbus Class

TheModbus Class in GPL supports master access to MODBUS/TCP slave devices connected to
the local Ethernet.

Table 14-2 summarizes the methods and properties of the class.

Modbus Class
Member Type Description

New Modbus Constructor
Method

Creates an object for a MODBUS connection and specifies the IP
address.

modbus_object.Close Method Closes any connections associated with this object.

modbus_object.ReadCoils Method Reads one or more outputs.
modbus_
object.ReadDeviceId Method Reads the device ID strings.

modbus_
object
.ReadDiscreteInputs

Method Reads one or more inputs.

modbus_
object
.ReadHoldingRegisters

Method Reads one or more holding registers.

modbus_
object
.ReadInputRegisters

Method Reads one or more input registers.

modbus_object.Timeout Get/Set
Property

Gets or sets the timeout, in milliseconds, that this connection will
wait for a reply before throwing an exception.

modbus_
object.WriteMultipleCoils Method Writes multiple outputs.

modbus_
object
.WriteMultipleRegisters

Method Writes multiple holding registers.

modbus_
object.WriteSingleCoil Method Writes a single output.

modbus_
object
.WriteSingleRegister

Method Writes a single holding register.

Table 14-2: Modbus Class Definitions

84 Copyright © 2024, Brooks Automation



Brooks Automation 14. MODBUS/TCP Communications
Part Number: 609644 Rev. A Modbus Master Connection

Modbus Master Connection

When GPL operates as a MODBUSmaster, it sets up a TCP client connection with a remote
MODBUS/TCP slave.  The slave acts as a TCP server. When the connection is no longer needed, it
may be closed.  To establish a connection, follow this procedure:

Step Action

1.
Create an IPEndPoint object for the remote MODBUS/TCP slave.  This object normally specifies the
IP address of the slave and omits the port number, in which case the standard MODBUS/TCP port is
used.

2. Create aModbus object using this endpoint_object. Creating aModbus object does not establish a
connection, but simply saves the endpoint information for later.

3. Use themodbus_object.Timeout property to set an appropriate timeout value for the connection.  By
default the timeout is infinite.

4.
Use the variousModbus class methods to read or write data.  The first time you issue a read or write,
GPL attempts to connect with the MODBUS slave.  If the slave does not respond, an exception is
thrown.

5. When finished with the MODBUS slave, callmodbus_object.Close to close it.  Do this at the end of a
session, not after each read or write request.

Modbus Master Examples

In both of these examples, the IPEndPoint object ep for the MODBUS slave is set to IP address
192.168.0.150. AModbus object,mb is created that refers to that endpoint. Themb object is used
for communicating with the slave.

This first example shows a procedure that reads from a MODBUS slave.

Public Sub Modbus_Read_Example
Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim ii As Integer
Dim bool() As Boolean
Dim input() As Integer

mb.ReadCoils(1, 16, bool)
For ii = 1 To 16

Console.Write("Coil " & CStr(ii) & ": ")
Console.Writeline(bool(ii-1))

Next ii

mb.ReadDiscreteInputs(1, 16, bool)
For ii = 1 To 16

Console.Write("Input " & CStr(ii) & ": ")

Copyright © 2024, Brooks Automation 85



14. MODBUS/TCP Communications Guidance Programming Language
Modbus Master Examples Part Number: 609644 Rev. A

Console.Writeline(bool(ii-1))
Next ii

mb.ReadHoldingRegisters(1, 2, input)
For ii = 1 To 2

Console.Write("HReg " & CStr(ii) & ": ")
Console.Writeline(Hex(input(ii-1)))

Next ii

mb.ReadInputRegisters(1, 2, input)
For ii = 1 To 2

Console.Write("IReg " & CStr(ii) & ": ")
Console.Writeline(Hex(input(ii-1)))

Next ii

mb.Close()

End Sub

The next example shows a procedure that writes to a MODBUS slave.

Public Sub Modbus_Write_Example
Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim ii As Integer
Dim output() As Integer
Dim bool() As Boolean

For ii = 1 To 16
mb.WriteSingleCoil(ii, ii And 1)

Next ii

mb.WriteSingleRegister(1, 600)

ReDim bool(15)
For ii = 0 To 15

bool(ii) = ii And 2
Next ii
mb.WriteMultipleCoils(1, bool)

ReDim output(15)
For ii = 0 To 15

output(ii) = ii*ii
Next ii

mb.WriteMultipleRegisters(1, output)

End Sub

86 Copyright © 2024, Brooks Automation



Brooks Automation 15. File I/O, Serial I/O, and Streams
Part Number: 609644 Rev. A File I/O, Serial I/O and Streams Overview

15. File I/O, Serial I/O, and Streams

File I/O, Serial I/O and Streams Overview

The following pages describe how to read and write data from or to serial ports and files using GPL
streams. These pages provide a summary of the classes and methods that may be used, as well as
some simple examples. For additional details on individual methods, see the GPL Dictionary.

Table 15-1 summarizes many of the concepts related to file and serial I/O operations that are
mentioned in this section.

Concept Description

ASCII
American Standard Code for Information Interchange. A code that represents the English
alphabet, numbers, symbols, and control characters as 7-bit binary numbers. Used by GPL to
represent text strings.

Buffer An internal data area that groups bytes into larger blocks so that they can be read or written more
efficiently.

Byte An 8-bit data item that can hold a number from 0 to 255 or an ASCII character. Streams are
composed of bytes.

CR Carriage Return. The ASCII control character with decimal value 13. Often used as a line
terminator.

Directory A named grouping of files. Also known as a "folder". Directory names have the same properties as
normal file names. Directories may be contained inside other directories.

File A named collection of bytes that may be stored in permanent flash memory (on device /flash) or in
temporary systemmemory (on device /ROMDISK).

File name
The name of a file. File names may be from 1 to 43 characters and contain any printable ASCII
character other than "/" or a leading ".". Upper and lower case letters are considered to be
different. It is recommended, but not required, that only valid GPL symbol names are used.

Flush

For efficiency, write operations often just add data to an internal buffer and do not access the
associated file or serial port.  This allows small strings to be accumulated.  The system then
automatically writes entire buffers to the output device when the buffer is full. The downside of this
process is that if the controller is turned off, the contents of the internal buffers are lost.  "Flushing"
buffers forces their contents to be written to the file or serial port. Closing a stream automatically
flushes any associated buffer.

LF Line Feed. The ASCII control character with decimal value 10. Often used as a line terminator.
Line
terminator A sequence of 1 or 2 ASCII characters that marks the end of a line. Normally LF, CR, or CR-LF.

Table 15-1: Concepts

Copyright © 2024, Brooks Automation 87



15. File I/O, Serial I/O, and Streams Guidance Programming Language
Classes and Methods Part Number: 609644 Rev. A

Concept Description

Path The file name, preceded by a list of folders that determine the location of the file. For example: A
GPL program file may be found in "/flash/projects/My_project/Main.gpl".

Serial port

An I/O device that transmits and receives byte data using a standard serial protocol. The first RS-
232 serial port is named "/dev/com1". Depending on your controller model, you may have
additional RS-232 serial ports named "/dev/com2" and "/dev/com3" and an optional RS-485 serial
port named "/dev/com4". Remote serial ports are named "/dev/comrxy" where "x" is the number of
the remote device and "y" is the serial port on the remote device.

The StreamWriter and StreamReader classes treat data from serial ports or files as a continuous
stream of 8-bit bytes. These bytes may be ASCII characters or they may be arbitrary binary data.
Many of the methods transfer data to and from GPL string variables. Each byte of a string may be
thought of as either an 8-bit binary value or an ASCII character. GPL includes methods and
functions to convert between integer data and ASCII characters in strings, for example the Chr and
Asc functions.

Some methods interpret the data stream as a series of lines, terminated by a special "line-
terminator" character sequence. The NewLine property allows some flexibility in determining the
line-terminator used when writing lines.

The File class contains methods for managing entire files or directories, such as creating directories
or deleting files. All the Filemethods are shared, so there are no File objects.

Classes and Methods

GPL provides the File built-in class for managing files and directories. Table 15-2 summarizes the
various methods available.

File Class
Member Type Description

File.ComputeCRC Shared
Function

Returns a CRC check code computed by reading though a file. Used to
verify that a file has not been corrupted.

File.ComputeLength Shared
Function

Returns the length of a file computed by reading through a file and
counting the bytes. Used to verify that a file has not been corrupted.

File.Copy Shared
Method Copies a single file on devices like the flash disk and ROMDISK.

File.CreateDirectory        SharedMethod Creates a directory including any undefined directories in its path.

File.DeleteDirectory Shared
Method Deletes a single directory, if it is empty.

File.DeleteFile Shared
Method Deletes a single file.

File.GetDirectories Shared
Method

Returns an array of strings containing the names of directories in a
directory.

Table 15-2: File Class

88 Copyright © 2024, Brooks Automation



Brooks Automation 15. File I/O, Serial I/O, and Streams
Part Number: 609644 Rev. A Classes and Methods

File Class
Member Type Description

File.GetFiles Shared
Method Returns an array of strings containing the names of files in a directory.

File.Length Shared
Function Efficiently returns the length of a file based on its directory entry.

GPL provides two built-in classes for accessing streams: StreamReader and StreamWriter. See
Table 15-3 and Table 15-4.

StreamReader
Member Type Description

New StreamReader Constructor Method     Opens a file or serial port device for reading.

streamreader_obj.Close Method Closes a file or device.

streamreader_obj.Peek Method Reads a single byte but does not remove it from the input
stream.

streamreader_obj.Read Method Reads a single byte and removes it from the input stream.
streamreader_
obj.ReadLine Method Reads a line of bytes terminated by LF, CR, or CR-LF.

Table 15-3: StreamReader Definitions

StreamReader
Member Type Description

New StreamWriter Constructor
Method Opens a file or serial port device for writing.

streamwriter_
obj.AutoFlush Property If True, automatically flushes output after every write.

streamwriter_obj.Close Method Closes a file or device.

streamwriter_obj.Flush Method Forces any pending output to occur immediately.

streamwriter_
obj.NewLine Property Defines the line terminator characters that are appended to output by

WriteLine.

streamwriter_obj.Write Method Writes a string or number to the output stream with no line terminator.

streamwriter_
obj.WriteLine Method Writes a string or number to the output stream followed by a line

terminator.

Table 15-4: StreamWriter Defnitions

The same methods are used for accessing both files and serial ports. The major differences
between the two are:

Copyright © 2024, Brooks Automation 89



15. File I/O, Serial I/O, and Streams Guidance Programming Language
File I/O Part Number: 609644 Rev. A

1. Serial ports are normally used for communications, but files are used to save and retrieve data.

2. Data read from files is normally available immediately, but you may need to wait to receive data from

a serial port.

3. Files have an "end of file", but serial port data can continue indefinitely.

4. Data written to files is normally buffered for efficiency, but serial port communications are often time-

critical so the output is not buffered.

GPL also provides a built-in class for performing output to the serial console or to the GDE console
window. See Table 15-5.

Console Class
Member Type Description

Console.Write Shared
Method Diagnostic method that writes a number or a string to the console.

Console.WriteLine Shared
Method

Diagnostic method that writes a number or a string to the console, followed
by a line feed (LF) character.

Table 15-5: Console Class Definitions

File I/O

Files are used to save and retrieve data to and from a disk, flash or similar device. To locate a file,
you must provide a "path" to that file. The first item in the path is the device, followed by a list of
folders, and ending with the file name. The device name, folder names and file name are separated
by "/" characters. For example:

/ROMDISK/my_folder/my_file.dat

File names often contain an embedded "." followed by a character sequence that indicates the file
type. This file type is treated as simply part of the file name and is ignored by the file system.
However, the file type is used by certain system components. For example, the GPL compiler
assumes that source files always have the type ".gpl", so a file name might be:

/flash/projects/Myproject/Main.gpl

Files may be either temporary or permanent. Temporary files are written to a temporary memory-
based disk with device name "/ROMDISK". These files consume blocks of the CPU's main memory
and are lost when the controller is restarted. Temporary files may be read or written very quickly.
Permanent files are written to a disk that is part of the non-volatile flash memory, with device name
"/flash". This disk is very slow to write, but may be read quickly. All file paths must begin with either
"/ROMDISK" or "/flash".

90 Copyright © 2024, Brooks Automation



Brooks Automation 15. File I/O, Serial I/O, and Streams
Part Number: 609644 Rev. A File I/O

If your /flash device has been divided into sub-partitions, you can use the devices /flash2, /flash3, ,
/flash8, depending on how many sub-partitions have been created.

Copyright © 2024, Brooks Automation 91



15. File I/O, Serial I/O, and Streams Guidance Programming Language
File I/O Part Number: 609644 Rev. A

Steps for Writing a File

Follow this procedure:

Step Action

1.
Open the file by creating a StreamWriter object. The path to the file to be written is a required
argument to the StreamWriter Newmethod. If you want to append to an existing file, set the append
input parameter to True. Otherwise a new file is created, overwriting any existing file that matches the
path.

2.
Decide if you want your data to be buffered during output. If not, change the AutoFlush property to
True, from its default value of False. Setting AutoFlush to True will make the output much slower,
especially for the /flash device.

3. If you are going to organize your output data into lines, decide if the default line terminator (CR-LF) is
appropriate. If not, use the NewLine property to change it.

4. Use theWriteor WriteLinemethods to write the data.

5. Use the Closemethod to force any pending output to be written and to update all internal file data.

Steps for Reading a File

Follow this procedure:

Step Action

1. Open the file by creating a StreamReader object. The path to the file to be read is a required argument
to the StreamReader Newmethod.

2. Read the data by using either the Read or ReadLinemethods.

3. Use the Peekmethod to check for the end of the file, or enclose the read operation in a Try-Catch
block to capture read errors.

4. Use the Closemethod to release any system resources held by the object.

File I/O Example

In this example, a temporary file is created using the StreamWriter object "o" and written with lines
that contain the string values "Line 1" through "Line 10". The file is closed and then opened for read
using the StreamReader object "i". If the Peekmethod does not indicate end-of-file, a line is read
from the input file and written to the console. Finally the input file is closed.

92 Copyright © 2024, Brooks Automation



Brooks Automation 15. File I/O, Serial I/O, and Streams
Part Number: 609644 Rev. A Serial I/O

Public Sub file_write_read
' Write a file, read it back, and display it on the console
Dim o As New StreamWriter("/ROMDISK/filetest")
Dim i As StreamReader
Dim line As String
Dim ii As Integer

For ii = 1 To 10
o.WriteLine("Line " & CStr(ii))

Next ii
o.Close()

i = New StreamReader("/ROMDISK/filetest")
While i.Peek() >=0 ' Check if end-of-file

line = i.Readline()
Console.WriteLine(line)

End While
i.Close()

End Sub

Serial I/O

Serial ports are normally used to communicate with a host computer or an intelligent sensor. The
GPL Controller's first RS-232 serial port is named "/dev/com1." If your controller contains additional
RS-232 serial ports, they are named "/dev/com2" and "/dev/com3."  If your controller contains an
RS-485 port that is available to application programs, it is named "/dev/com4".  If your system is
connected to a Remote IO (RIO) board that provides additional remote serial ports, they are named
"/dev/comrxy" where "x" is the number of the RIO board and "y" is the number of the RIO's serial
port.

The first serial port is also used by the GPL serial console interface, so you cannot use the serial
console if you are using "/dev/com1". When you open device "/dev/com1", the console interface is
immediately disabled. You can disable or re-enable the serial console, by changing Parameter
Database entry "Serial console enable" (DataID 125). When the serial port is being utilized for
program input and output, you can still access the system console via the Telnet interface.  Note
that system crash messages and certain fatal error messages may be output to /dev/com1 even
when it is being used by a GPL procedure. Your remote system must be able to handle these
unexpected messages.

Serial ports send and receive streams of byte data in a format and rate determined by their
configuration. See instructions elsewhere for setting up the baud rate, character size, stop bits,
parity, and hardware flow control settings. Unlike files, a single serial port can be opened for both
input and output simultaneously. There is no way for a serial device to detect that a communications
link has been closed. Normally the remote device sends a special byte sequence or message to
indicate the end of communications.

Copyright © 2024, Brooks Automation 93



15. File I/O, Serial I/O, and Streams Guidance Programming Language
Serial I/O Part Number: 609644 Rev. A

Steps for Communicating Using a Serial Port

Follow this procedure:

Step Action

1. If you are planning to use the first serial port permanently for communications, set the system
parameter "Serial console enable" (DataID 125) to 0.

2. Open the port for output by creating a StreamWriter object. The device name is a required argument
to the StreamWriterNewmethod. For serial port 1, the device is "/dev/com1."

3. Open the port for input by creating a StreamReader object. The device name is a required argument
to the StreamReader Newmethod. Use the same device as specified in the previous step.

4.
Decide if you want your data to be buffered during output. Generally serial communications is not
buffered. If you want it buffered, change the AutoFlush property to False, from its default value of
True. If you use buffered output you probably need to use the Flushmethod to make sure your output
is transmitted when you expect.

5. If you are going to organize your output data into lines, decide if the default line terminator (CR-LF) is
appropriate. If not, use the NewLine property to change it.

6. Use theWrite orWriteLinemethods on your StreamWriter object to write data.

7. If you do not want your input procedure to be blocked while waiting for data to be received, use the
Peekmethod to check if data is present before using Read.

8. Use the Read or ReadLinemethods on your StreamReader object to read data.

9. Use the Closemethod to release the serial ports for other use and free system resources.

Serial I/O Example

In this example, serial port 1 is used to communicate with an operator terminal connected to the
port. The program prompts the operator to type a character and waits until they do. Then it outputs a
message describing the character to the serial port. The device "/dev/com1" is opened for both
output and input by creating both StreamWriter and StreamReader objects, "o" and "i",
respectively. The output line terminator is set to CR by using the NewLine property. The procedure
polls the input every 500 milliseconds for input. If no input is received, a series of dots is output.
When an input character is received, it is converted to a readable string and a message is written
back to the serial port. When an ASCII ESC character (decimal value 27) is received, the procedure
closes the streams and exits.

Public Sub com1
' Open com1, echo info about any input.
Dim o As New StreamWriter("/dev/com1")

94 Copyright © 2024, Brooks Automation



Brooks Automation 15. File I/O, Serial I/O, and Streams
Part Number: 609644 Rev. A Console Output

Dim i As New StreamReader("/dev/com1")
Dim c As Integer
Dim ss As String

o.NewLine = Chr(GPL_CR) ' Set CR as the line terminator
o.WriteLine("Type characters, hit ESC to quit.")

Do
o.Write("Waiting for input ")
While i.Peek() < 0

Thread.Sleep(500)
o.Write(".")

End While
o.WriteLine("")

c = i.Read()
If c >= &H20 Then

ss = Chr(c)
Else

ss = "^" & Chr(c+&H40)
End If

o.WriteLine("You typed " & """" & ss _
& """ = " & CStr(c))

Loop While c <> 27 ' Exit if ESC typed

i.Close()
o.Close()

End Sub

Console Output

As a convenience during program development and testing, serial output may be performed to the
GPL console. The actual destination of console output depends on the presence of the -event
switch on the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/com1". If -event is present, console output is sent to GDE where it is
displayed in the GPL Output window.

For more information on how to use and configure the serial ports, see the previous Serial I/O
section.

The console output methods are overloaded and allow either a numeric value or string to be output.
For output that combines both string and numeric values, use the CStr function.

Example
Public Sub Main

Dim ii As Integer
For ii = 1 To 10

Console.WriteLine("The square of " & CStr(ii) _
& " is " & CStr(ii*ii))

Copyright © 2024, Brooks Automation 95



15. File I/O, Serial I/O, and Streams Guidance Programming Language
Non-Volatile Memory (NVRAM) Part Number: 609644 Rev. A

Next ii
End Sub

Non-Volatile Memory (NVRAM)

Some Precise controllers manufactured after June 2013 include a small area of Non-Volatile
Memory (NVRAM) that is user accessible. The NVRAM contents are preserved when the controller
power is turned off. This area was added to permit applications to store a limited amount of key
dynamic state information such as performance statistics or System Error Log entries.

The NVRAM is different from the non-volatile flash memory (device /flash) in that the NVRAM is not
affected by unexpected power-off conditions.  After writing to the /flash device, you must wait for at
least 15 seconds before powering off the controller. If you do not wait, the /flash contents may
become corrupted and you may lose all of the files stored on the /flash device.  The NVRAM can be
written without danger of corrupting existing data, even if the power is turned off during a write
operation. Of course, the data actively being written may be lost.

Another difference is that the flash memory can only be written a finite (but relatively large) number
of times, whereas the NVRAM can be written an unlimited number of times.

The major downside of the NVRAM is that its storage area is small compared to the flash memory.
Depending on your controller model and options, the NVRAM size may be 8Kbytes or 32Kbytes. On
these devices, about 320 bytes are reserved and cannot be written.

/NVRAM Files

Data may be stored in files on the NVRAM by specifying the device /NVRAM. This device may be
used with all types of I/O methods, including StreamWriter, StreamReader, and FTP.

File Names

To maximize the space available for data, a maximum of 16 NVRAM files may be created, and the
names must be "file1" through "file16".

Maximum File Size

When an NVRAM file is created, it's maximum size should be defined by appending the following
switch to the file path specification:

-size n

where n is the maximum size of the file, in bytes. This value may range from 4 to the maximum
number of unused bytes on the device (less than 7873).  Once a file is created, its size cannot be
changed unless the file is deleted and created again.

96 Copyright © 2024, Brooks Automation



Brooks Automation 15. File I/O, Serial I/O, and Streams
Part Number: 609644 Rev. A Non-Volatile Memory (NVRAM)

If “-size n” is omitted when creating a new file, a default size of 1024 bytes is assumed.

Circular Files

To assist in logging data to the NVRAM, a file may be specified to act as a circular buffer that wraps
around to the beginning once it reaches its maximum size. This mode of operation is enabled by
appending the following switch to the file path specification:

-wrap

In a circular file, new data overwrites the oldest data once the maximum file size is reached. In a
normal non-circular file, an error is signaled if an attempt is made to write when the file is full.

By searching for the final record in a file, you can always find the latest entry, even after a power
failure.

File Records

When a NVRAM file is written, the data is stored as a record. Each record can have a maximum
length of 255 bytes. Each record is written atomically, that is, either the entire record is written or
none of the record is written, even if the power fails during the write operation. In a circular file, entire
records from the start of the file are removed atomically before new records are added. In this way,
records in the file are never left in a partially updated state.

Delaying an output request to the NVRAM by buffering defeats some of the NVRAM benefits, since
buffered data may be lost during a power fail. To avoid this problem, StreamWriter objects for
device /NVRAM have AutoFlush enabled by default. If you disable AutoFlush, you need to be
aware of the implications and use the Flushmethod appropriately.

There is one byte of overhead for the entire file, and one byte for each record. You should account
for this overhead when computing the maximum number of records that a file can contain.

There are no special considerations for reading an NVRAM file except that attempting to read a
circular file while it is being written may return inconsistent data.

FTP Access

The files in the /NVRAM device may be accessed by a remote FTP client. If your host computer
supports this service, the /NVRAM folder shows up in the top-level FTP directory. FTP always
displays the maximum allocated file size and the date and time the file was last modified.

File Writing Examples

In this example, a non-circular file with a maximum length of 64 bytes is created,

Copyright © 2024, Brooks Automation 97



15. File I/O, Serial I/O, and Streams Guidance Programming Language
Non-Volatile Memory (NVRAM) Part Number: 609644 Rev. A

Dim tfile As New StreamWriter("/NVRAM/file2 -size 64", True)
Dim ii As Integer
For ii = 1 To 100

tfile.WriteLine("Record " & CStr(ii))
Next ii
tfile.Close

This program fails with ii = 6 with error -323 (Device full). At this point, /NVRAM/file2 contains the
following records:

Record 1
Record 2
Record 3
Record 4
Record 5

In the next example, a circular file is created of the same size.

Dim tfile As New StreamWriter("/NVRAM/file3 -size 64 -wrap",
True)
Dim ii As Integer
For ii = 1 To 100

tfile.WriteLine("Record " & CStr(ii))
Next ii
tfile.Clos

This program does not fail. After execution completes, /NVRAM/file3 contains the final records
written:

Record 96
Record 97
Record 98
Record 99
Record 100

Automatically Logging Error Messages to the NVRAM

In GPL 4.0 and later, a new feature was added that automatically writes system error messages into
a specified file as the errors occur.  This feature is enabled by writing the file name into the
Parameter Database entry "Error log file" (DataID 323).  This feature was designed with the NVRAM
in mind but can be used with other file structured devices as well.

To automatically enable error message logging into the NVRAM, a file name and file size must be
specified.  For example, DataID 323 could be set to:

98 Copyright © 2024, Brooks Automation



Brooks Automation 15. File I/O, Serial I/O, and Streams
Part Number: 609644 Rev. A Flash Sub-Partitions

"/NVRAM/file1 -size 7500 -wrap"

This would write all new error messages into file1 using most of the available NVRAM space.  The
maximum size could be set to 7872.  The "-wrap" will create a circular buffer so that older messages
will be over-written by new messages when the file becomes full.

Prior to enabling error logging, the console command "Del" should be used to make space for the
error log file.

Please see the documentation on "Error log file" (DataID 323) for a full list of the options available
with this feature.

Non-Volatile Integer Data

For some applications, only a small amount of data needs to be saved and the flexibility offered by
the file system is not required.

GPL provides eight 32-bit signed integers that are stored in the NVRAM and accessed by DataID
1892 "GPL program NVRAM variable array". These DataID values may be freely read or written by
GPL programs or the web interface. The most recent value written is always saved in the NVRAM.
The four bytes that make up each 32-bit value are always written atomically, so each 32-bit value is
always valid.

Flash Sub-Partitions

The flash memory on your controller is divided into a number of partitions. These partitions may be
seen in DataID 123 "Flash partition size, Kbytes". The standard partitions are as follows:

1 - dBUG boot loader
2 - FPGA firmware
3 - GPL system firmware
4 - User flash disk
5 - System data

Files containing system configuration, user programs, and user data are all stored in partition 4, the
"User flash disk" partition. By default, this entire partition is accessed by the device "/flash".

Flash Corruption

One characteristic of the flash device on Precise controllers is that sectors must be erased before
they are written. An entire 128Kbyte sector must be erased and re-written, even if only a small part
of the data is changed. During this erase-write operation, if a power failure occurs or controller

Copyright © 2024, Brooks Automation 99



15. File I/O, Serial I/O, and Streams Guidance Programming Language
Flash Sub-Partitions Part Number: 609644 Rev. A

power is turned off, large amounts of data may be lost, including the area of the flash that keeps
track of files within the partition.

Once the flash partition is corrupted, there is no alternative but to reinitialize (format) the affected
partition and restore the data from backup.

For this reason, we do not recommend writing to files on the flash if there is any danger of power
interruption.

Sub-Partitions

When corruption occurs, it is limited to the single partition that is being written. This is why corrupting
the User flash area does not affect the GPL system or FPGA firmware.

To limit the area of possible corruption, the single Flash disk partition may be divided into multiple
independent partitions. Static program and configuration data may be kept in one partition that is
never written during runtime. Less critical dynamic data may be written to a different partition. If that
partition is corrupted due to power interruption, only that data is lost and only the corrupted partition
needs to be reformatted.

The sub-partitions names are "/flash2", "/flash3", "/flash8". These names only appear if that sub-
partition has been configured for your flash disk. These names may be used anywhere that the main
flash disk name "/flash" is valid.

If a controller with sub-partitions is downgraded to an older version of GPL that does not support
sub-partitions, only the main "/flash" partition is accessible and its size will be smaller than usual due
to the presence of the sub-partitions. If you issue a "format" command on that old GPL system, the
main partition size is restored and all sub-partitions are lost.

Creating Sub-Partitions

Sub-partitions are created by setting non-zero values into the DataID 137 "User flash sub-partitions,
Kbytes" array. Each element of this array specifies the size of a sub-partition, in Kbytes. This array
is stored internally on the flash device and does not appear in any configuration .pac files. The sub-
partitions "/flash2", "/flash3", "/flash8" sizes correspond to the values of DataID 137 array elements.
If a partition size is 0, that name does not appear.

The size of the main partition "/flash" is decreased to reflect the space used by the sub-partitions.
You must leave at least 128Kbytes for the main partition after all sub-partitions are allocated.

100 Copyright © 2024, Brooks Automation



Brooks Automation 15. File I/O, Serial I/O, and Streams
Part Number: 609644 Rev. A Flash Sub-Partitions

All sub-partition sizes must be 0 or multiples of 128. To create sub-partitions, follow this procedure:

Step Action

1. Backup any data on the main flash disk "/flash" or any sub-partitions that currently exist. All this data
will be lost during this process.

2. Using the web interface, set DataID 137 values to the partition sizes you want. All sizes must be a
multiple of 128. There must be at least 128 left over that will be assigned to the main "/flash" partition.

3. Reboot. You will get numerous error messages at startup regarding /flash, fsmount, and missing
parameter DB files.

4. If at this point, you decide you wanted to keep your old partitions, do not continue with the next step.
Instead, restore DataID 137 to its original values and reboot.

5.
Issue the format command for each sub-partition using the serial console, GDE console, Telnet, or the
web interface System Console. Enter the command "format -ERASE /flashn" where n is empty for the
main partition and 2 through 8 for additional partitions.

6. Verify the sizes of the sub-partitions by entering the command "dir -stat /flashn" where n is empty for
the main partition and 2 through 8 for additional partitions.

7. Restore your data to the various partitions. Be sure to restore the "config" folder to the main /flash
device.

8. Reboot. You should not get any error messages.

Copyright © 2024, Brooks Automation 101



16. Vision Guidance Guidance Programming Language
Vision Guidance Overview Part Number: 609644 Rev. A

16. Vision Guidance

Vision Guidance Overview

The following pages describe how to access the PreciseVision machine vision system from a GPL
procedure and use the vision data in a motion application.

PreciseVision is a software application that runs on a PC.  The PC, in turn, is connected to cameras
that acquire images to be processed. The vision processing performed by PreciseVision is specified
in terms of "vision tools" and "vision processes". Details about how to setup and program
PreciseVision may be found in the PreciseFlex Library, under "PreciseVision Machine Vision
System."

In order for GPL to send commands to PreciseVision, GPL must know the IP address for the PC that
is executing PreciseVision.  This value is specified in the Configuration and Parameter Database in
the "Vision server IP address" (DataID 424).

Table 16-1 summarizes some of the concepts related to vision operations that are mentioned in this
section.

Concept Description

Client A process that makes requests to a server and handles the responses. Normally a client initiates
all communications and does not receive data except in response to a request.

Server A process that responds to requests and sends responses. It normally does not initiate I/O.

Vision Tool A single operation executed by PreciseVision. A typical tool might find an object (e.g. a Finder
Tool), measure a dimension (e.g. an Edge Locator) or locate a key feature (e.g. a Line Fitter).

Vision
Process

A series of vision tools performed on an image by PreciseVision. The tools in the process normally
produce Vision Results that are used by a GPL procedure.

Vision
Result

The output of a Vision Tool that is executed by PreciseVision. A set of Results may contain
pass/fail information, location data, or general numeric data. Some tools only generate a single set
of results (e.g. a Line Fitter) while others generate multiple sets of results (e.g. a Finder).  A single
set of results is normally stored in a VisResult object in GPL.

Table 16-1: Vision Operations Concepts

102 Copyright © 2024, Brooks Automation



Brooks Automation 16. Vision Guidance
Part Number: 609644 Rev. A Classes and Methods

When active, PreciseVision acts as a server that fields requests from client GPL procedures. These
client GPL procedures execute on a Precise Controller and communicate with the PC via Ethernet.
By designing GPL procedures as clients of PreciseVision, GPL procedures have complete control
over when pictures are taken and processed.

To take a picture and analyze its results, a GPL procedure issues a command to PreciseVision to
execute a "vision process".  Normally, a vision process consists of a tool that takes a picture (i.e. an
Acquisition Tool) followed by additional tools to process and analyze the picture.  In the simplest
case, a vision process consists of a single tool that operates on an existing picture.  At times, a
process can be quite complex and might contain dozens of tools that inspect multiple features of
parts to verify that the parts are correct. From GPL's point of view, a vision process is a single,
indivisible operation.  That is, after a GPL procedure starts a vision process, no results are available
until after the process completes its execution. When the process is done running, GPL can then
interrogate PreciseVision for its results.

In order for GPL to execute a process and retrieve the results, GPL has to know the name that has
been assigned to the process in PreciseVision and the names of any tools for which results are
desired.  Once the vision process has completed execution, a GPL procedure can utilize the tool
names to retrieve the results from any tool.  These results typically indicate the locations of parts
that are to be manipulated and the type of each part.  In addition, vision can be used to check for key
dimensions or other features of the parts and can return information to GPL about the quality of a
part.  As mentioned above, some tools return only a single set of results while others can return
multiple sets of information.

Each time that a vision process is executed, all of the previous results of its tools are lost and
replaced by the newly computed results.  However, if a second vision process is executed using
another communication object, the results of first vision process are preserved.

The following pages provide a summary of the built-in GPL classes and methods that act as an
interface to the PreciseVision system, as well as some simple examples.

Classes and Methods

The network communication interface between the Precise controller and the PreciseVision system
is implemented by a Vision class and its associated objects. Its methods and properties allow a
GPL procedure to establish a connection with PreciseVision, run a vision process, and obtain the
results from that process.

The VisResult class defines objects that each store a single set of results from a vision tool. These
objects may contain pass/fail information, location data, or general numeric data, depending on the
vision tool.

Table 16-2 and Table 16-3 summarize the available members for the vision classes.  For additional
details on individual vision methods and properties, please see the "GPL Dictionary."

Copyright © 2024, Brooks Automation 103



16. Vision Guidance Guidance Programming Language
Classes and Methods Part Number: 609644 Rev. A

Vision Class
Member Type Description

New Vision Constructor
Method Creates an empty Vision object. Does not communicate with PreciseVision.

vision_
object
.Disconnect

Method Closes any open connection associated with a vision object.

vision_
object
.ErrorCode

Property Returns the numeric error code for the last executed vision process. A value
of 0 indicates success; a negative value indicates an error.

vision_
object.Instance Property Sets and gets the number of the PreciseVision instance that is associated

with a vision object.
vision_
object
.IPAddress

Property Sets and gets the IP address of the PC that is running the PreciseVision
application software associated with a vision object.

vision_
object.Process Method Requests that PreciseVision execute a vision process and waits for it to

complete. Connects to PreciseVision if there is currently no connection.

vision_
object.Result Method

Returns a VisResult object that contains a single set of results from a
previously executed vision tool.  Connects to PreciseVision if there is
currently no connection.

vision_
object
.ResultCount

Method
Returns the number of sets of vision results created by a vision tool the last
time it was executed.  Connects to PreciseVision if there is currently no
connection.

vision_
object.Status Property

Returns a numeric value indicating the status of a vision process:

0 = No vision process for this object,
1 = Process is running,
2 = Process complete but with error,
3 = Process complete with success.

vision_
object
.ToolProperty

Property Sets or gets a property value of a PreciseVision tool or a general "system"
property for the vision server connected to a vision object.

Table 16-2: Vision Class Definitions

VisResult
Class Member Type Description

New VisResult Constructor
Method    

Creates an empty VisResult object. Not useful since VisResult objects are
normally created by the vision_object.Resultmethod.

visresult_
object.ErrorCode Property

Returns the numeric error code for this result. A value of 0 indicates
success; a negative value indicates an error.  A positive value indicates a
non-critical error occurred.

Table 16-3: VisResult Class Definitions

104 Copyright © 2024, Brooks Automation



Brooks Automation 16. Vision Guidance
Part Number: 609644 Rev. A Vision Interface

VisResult
Class Member Type Description

visresult_
object.Info Property Returns the nth numeric information field contained in this set of results.

visresult_
object.InfoCount Property Returns the number of numeric information items in this set of results.

visresult_
object.InfoString Property Returns a String value if the set of vision results includes text information.

visresult_
object.
InspectActual

Property Returns the value of the tool property that was tested in the vision
inspection process.

visresult_
object.
InspectPassed

Property Returns True if a property of the vision results satisfied the tool's vision
inspection criteria.

visresult_
object.Loc Property Returns the position and orientation from a set of results as a Cartesian

Location object.
visresult_
object.ProcessID Property Returns the ID of the vision process that generated the result.

visresult_
object.Type Property Returns the type of this set of results. Currently always zero.

Vision Interface

Vision objects are used to communicate with the PreciseVision system. The communications occur
across a TCP/IP Ethernet link between the Precise controller and the PC running PreciseVision.
Simply creating a Vision object does not cause any communication to occur.

The Visionmethods Process, Result, and ResultCount all send a request to PreciseVision and
wait for a reply. There is no method to explicitly connect to PreciseVision. A connection is
automatically established when one of these methods is called.

When making a connection, the Precise controller attempts to communicate with TCP port 1410 at
the IP address specified by the parameter database entry "Vision server IP address" (DataID 424).
If a connection cannot be made, an exception is thrown. Once a request is sent, PreciseVision must
respond within 30 seconds or an exception is generated.

The steps for preparing PreciseVision to service requests and to execute vision processes for a
Precise controller are as follows:

1. Physically connect your Precise controller with the PC running PreciseVision. Make sure the Ethernet

IP addresses are setup properly and the PC can communicate with the GPL controller.

2. Using PreciseVision on the PC, create a vision process that uses vision tools to acquire an image and

perform the desired vision operations.

3. Make sure that PreciseVision is active and listening for requests.

Copyright © 2024, Brooks Automation 105



16. Vision Guidance Guidance Programming Language
Vision Procedure Example Part Number: 609644 Rev. A

To develop a vision guidance application that will execute on a Precise controller and communicate
with PreciseVision, write and execute a GPL procedure that does the following:

1. Creates a Vision object to serve as the interface to PreciseVision.

2. Executes a Vision Processmethod to initiate a vision process in PreciseVision. The process name

specified in this method must match a vision process defined within PreciseVision.

3. Invokes the ResultCountmethod to determine how many sets of results were generated by each

vision tool of interest.

4. Accesses the Resultmethod for each vision tool of interest to obtain a VisResult object that contains

the output for the tool.

5. Uses the VisResult class properties and methods to obtain specific vision data that can be applied in

your GPL procedure.

6. Executes the VisionDisconnectmethod when done with all vision processing to close the

communication connection.

Vision Procedure Example

In this example, PreciseVision is used to determine the location of a part that is then acquired by the
robot. The output of the vision process is used to create a reference frame, and the robot is moved
to a point relative to that reference frame.

In particular, the robot moves to the location safe to avoid blocking the camera's field-of-view. The
Vision object vis is then used to connect with PreciseVision and execute the vision process "Main".
This vision process takes a picture and executes vision tools to locate the part and perform any
desired visual verifications. At the end of the vision process, all that GPL requires is the results of
the tool “part1”, which contains the location of the part. The GPL procedure then checks the
ResultCount property to ensure that at least one set of results is available. The Resultmethod
returns the first set of results from "part1" in the VisResult object vResult. The returned vision
location is used to create the object vsRefFrame, which is the reference frame for location
vsRelPoint. The robot moves to vsRelPoint and finally moves back to its safe location.

Public Sub MAIN
Dim vis As New Vision
Dim vResult As New VisResult

Robot.Attached = 1
Move.Loc(safe, vsProfile)

vis.Process("Main") ' Run vision process "Main"
If vis.ResultCount("part1") = 0 Then

Console.Writeline("Vision object not found")

106 Copyright © 2024, Brooks Automation



Brooks Automation 16. Vision Guidance
Part Number: 609644 Rev. A Vision Procedure Example

Goto done
End If
vResult = vis.Result("part1", 1) ' Get results

' Create a reference frame object and set it
' equal to the returned vision location
Dim vsRefFrame As New RefFrame
vsRefFrame.Loc.PosWrtRef = vResult.Loc

' Pickup point is relative to new frame
vsRelPoint.RefFrame = vsRefFrame

Move.Approach(vsRelPoint, vsProfile)
Move.Loc(vsRelPoint, vsProfile)
Move.Approach(vsRelPoint, vsProfile)

' Move back to safe location
Move.Loc(safe, vsProfile)

done:
End Sub

Copyright © 2024, Brooks Automation 107



17. Managing and Executing GPL Pro-
jects Guidance Programming Language

Projects and Files Part Number: 609644 Rev. A

17. Managing and Executing GPL Pro-
jects

Projects and Files

In GPL, rather than executing a "program", a "Project" is the basic executable entity. Console
commands are provided for loading, compiling, and executing a Project.  A Project consists of two
or more text files that are stored within a single disk folder (directory).  Each file is a standard
human-readable ASCII file.  The folder name and the Project name are synonymous.

The file "Project.gpr" must always be present in each project folder and is referred to as the "Project
File".  This file contains information on the other files within the Project including which program is
invoked when the Project begins execution. Each GPL source file has a "gpl" extension.  These files
each can contain one or more modules, which in-turn can contain multiple variable declarations and
procedures. A Project can also contain one, several or no files with a "gpo" extension.  This type of
file contains a global module that is used to defined global Location and Profile objects. This file is
convenient for storing taught robot locations and general motion Profiles that are accessible by all
procedures within the Project.

Loading a Project into memory or copying a Project from memory or between disk units is
equivalent to copying a file folder and all of its contents. Multiple Projects can be present in memory
although only one Project can be executed at any given time.

Modules

Only modules can be found at the outer-most level of a file. [In the future, class declarations will also
be allowed]. These modules contain variable declarations such as Public, Private, and Dim
statements, or procedure declarations such as Sub or Function statements. A procedure or
module-level variable can be accessed by fully specifying its name using the syntax:

module_name.variable_name
-or-

module_name.procedure_name

108 Copyright © 2024, Brooks Automation



Brooks Automation 17. Managing and Executing GPL Projects
Part Number: 609644 Rev. A Executing a Project

Within a single module, all procedures and module-level variables can be freely accessed.
However, only Public procedures and variables in other modules can be accessed. If Public
variables or procedures with the same name are found in two different modules, they can only be
accessed by using the fully-specified name, to disambiguate the multiple definitions.

Executing a Project

Before a Project can be executed, it must be loaded into memory and compiled.  The steps are as
follows:

1. Load the Project and associated files into memory.

2. Issue a compile request for the Project.

3. Issue a start request for the Project.

The Project begins execution at the "start" procedure specified in the Project File (Project.gpr). Note
that the start procedure must be declared Public.

Copyright © 2024, Brooks Automation 109



18. Thread Control Guidance Programming Language
Thread Control Overview Part Number: 609644 Rev. A

18. Thread Control

Thread Control Overview

When a GPL Project begins execution, its main procedure starts running in a user program
"thread." Each thread has its own execution stack and runs independently of all other program and
system threads.

The GPL system supports the simultaneous execution of up to 64 GPL user program threads.  
These threads allow simultaneous execution of multiple projects.  Even more importantly, a main
thread can initiate and control the execution of additional procedures in their own threads.  This is
very convenient for the execution of communications servers, digital I/O scanners, and cell control
tasks that are best executed asynchronously from the main execution thread.  In general, executing
procedures that operate asynchronously in their own threads simplifies the design, coding, and
debugging of the procedure.

Thread Synchronization

When multiple GPL threads are employed within a single project, it is often necessary to
synchronize them. For example, a server thread may wait for a client thread to post a command,
and the client may wait for the server to respond.

Two or more threads can efficiently be synchronized by using the SendEvent andWaitEvent
methods. Any GPL thread can send a synchronization message called an event to any other GPL
thread. Up to 16 independent events per thread can be sent to permit the receiving thread to
discriminate between types of events. The events are numbered 1 through 16. The target thread
usesWaitEvent to efficiently wait for one or more of these events to be received. While a thread is
waiting for an event, it uses almost no CPU time.

110 Copyright © 2024, Brooks Automation



Brooks Automation 18. Thread Control
Part Number: 609644 Rev. A Thread Scheduling

Thread Scheduling

GPL includes a multi-threaded preemptive priority-driven real-time operating system. User program
threads can be swapped out or preempted by system threads any time the system clock ticks or
whenever an I/O device interrupt occurs. Clock tick interrupts occur every 125 µsec (8KHz) and
cause the system to swap out the current thread and begin execution of servo control threads and
other high priority system threads. After the system threads complete, eligible user threads are
executed during the remainder of the time before the next clock tick.

The standard thread scheduling algorithm for normal user threads is a round-robin scheme.  In this
approach, each user thread is permitted to execute for up to one millisecond before the next user
thread that is ready to run is swapped in. Since the clock ticks at 8KHz, a user thread runs for up to
eight 125 µsec ticks.  If a user thread is active when the clock ticks, the thread's "remaining tick
count" is decremented by 1, even if it did not run for the entire previous tick. When this count hits 0,
the thread is moved to the end of the round-robin list. After all other user threads and system
threads have had a chance to run, the original thread will move to the start of the round-robin list and
will resume execution.

When a thread goes to sleep, is blocked, or is preempted, its remaining tick count is not
decremented, so when it resumes execution, it gets the remainder of the 8 ticks that are left. When a
thread is blocked or uses the Thread.Sleepmethod, all other threads continue to execute, using
whatever time is available. When a user thread is unblocked or wakes from a sleep, it goes to the
end of the round-robin list with whatever time it had left in its 1 msec interval. When a thread is
preempted by a higher priority thread and resumed, it continues executing for whatever time it has
left.  It is not put at the end of the round-robin list.

If many user threads and system threads are busy, a given user thread may only get to run for 1 out
of nmilliseconds, where n is the number of busy threads. Nonetheless, the standard round-robin
scheduling provides a good balance for most applications. For some time-critical user threads, this
scheduling method may be undesirable.

An alternate scheduling algorithm, enabled by the Thread.Schedulemethod, allows critical user
threads to run in a timely manner ahead of all other standard-priority threads. This algorithm is
based on the POSIX sporadic scheduling policy. The algorithm schedules specified threads as
follows:

l At a fixed repetition rate, any specified high priority user thread has its priority raised above the standard
thread priority.

l After the high priority thread has run for a specified period of time, the thread's priority is returned to the
standard level, and it is placed at the end of the round-robin queue of standard-level threads.

l The high priority thread may run at standard priority if it gets to the front of the round-robin queue before
the start of its next high priority period.

For more information on the specifics of the alternative scheduling algorithm, please see the
dictionary page on the Thread.Schedulemethod.

Copyright © 2024, Brooks Automation 111



18. Thread Control Guidance Programming Language
The Thread Class Part Number: 609644 Rev. A

The Thread Class

To control the starting, stopping, and monitoring of independent threads, GPL includes a Thread
Class that includes the required methods and properties.  In Table 18-1, the members of this Class
are briefly described.  Completion information on these class members are provided in the GPL
Dictionary pages.

Member Type Description

New Thread Constructor
Method    Creates a thread object and associates it with a procedure.

thread_object.Abort Method Stops execution of a thread such that it cannot be resumed.

thread_object.Argument Property Sets or gets a numeric value that can be used as a parameter for a
thread.

Thread.CurrentThread Shared
Method Returns a thread object for the currently executing thread.

thread_object.Join Method Waits for a thread to complete execution, with a timeout.

thread_object.Name Get Property Returns a String containing the name of the thread associated with
this object.

thread_object.Project Get Property Returns a String containing the name of the project associated
with this object.

thread_object.Resume Method Resumes execution of a thread that was suspended.

Thread.Schedule Shared
Method

Changes the execution priority and thread scheduling algorithm for
the current thread.

thread_object.SendEvent Method Sends an event to a thread to notify it that a significant transition
has occurred.

Thread.Sleep Shared
Method

Causes the current thread to stop execution for a specified amount
of time.

thread_object.Start Method Initializes and starts execution of a procedure as an independent
thread.

thread_
object.StartProcedure Get Property Returns a String containing the name of the start procedure

associated with this object.

thread_object.Suspend Method Suspends execution of a thread so that it can be resumed.

Thread.TestAndSet Shared
Method

Atomically reads a numeric variable and writes a new value.  Used
for restricting access to data shared between threads.

thread_
object.ThreadState Get Property Returns an integer indicating the execution state of a thread.

Thread.WaitEvent Shared
Method Causes the current thread to wait for an event.

Table 18-1: Thread Class Definitions

112 Copyright © 2024, Brooks Automation



Brooks Automation 18. Thread Control
Part Number: 609644 Rev. A Thread-Safe Data Access in GPL

Thread-Safe Data Access in GPL

In applications that use more than one user program thread, the operating system dynamically
switches execution of the threads. From instant to instant, there is no guarantee that any particular
thread will continue execution. A thread can be swapped out and another thread swapped in at any
moment, even in the middle of an instruction.

When two or more user program threads access the same data, they may interact in an unexpected
way. For example, if two user threads both attempt to increment the same GPL variable, an
intermittent bug may occur. If both threads execute the statement: a = a + 1, the following (Table 18-
2) may happen, assuming a starts at value of 0:

Thread Switching Thread Action
Thread 1 is running. Thread 1 reads the value of a. It reads the value 0.
Thread 2 swaps in. Thread 2 reads the value of a. It reads the value 0.
Thread 2 continues. Thread 2 adds 1 to its value and writes it to a.
Thread 1 resumes. Thread 1 adds 1 to the value 0 it read previously, and writes it to a.

Table 18-2: Thread Switching & Action

Even though both threads intended to add 1 to a, the final value of a is 1 instead of the expected
value of 2.

When an operation is thread-safe it means that it produces the same results regardless of whether a
single thread or multiple threads are performing it.

Thread-Safe Data Types in GPL

Numeric and Boolean data reading is always thread-safe. All numeric data types may be read,
regardless of how the data is being written. You will always get one of the values that someone has
written. You can also read numeric data from statically allocated arrays or objects.

Simple writing of numeric data is also thread-safe. If multiple threads write the same variable, the
result will always be one of the values written. If only one thread is writing a numeric variable, there
is no need to interlock the access with threads that are reading.

Operations that first read and then write a numeric variable are not thread-safe, as
illustrated by the example in the previous section. It is always possible for another thread to write the
data value while the original thread is modifying it.

Groupings of numeric values (arrays and objects with multiple embedded values) are not thread-
safe.  For example, if one thread changes the X and Y values of a location, a second thread may
see a transient condition where only the X or Y is changed.

String data is not thread safe. If one thread is reading a string value while another thread is
writing it, the reader may see a mixture of the old data and the new data. Simple string assignment

Copyright © 2024, Brooks Automation 113



18. Thread Control Guidance Programming Language
Thread-Safe Data Access in GPL Part Number: 609644 Rev. A

is thread-safe since the final value will be one of the values written. However most string methods
that modify the string values are not thread-safe.

Objects are generally not thread-safe and there is no interlocking among the object fields.
However individual numeric fields within an object are thread-safe.

Dynamic arrays are not thread-safe, even if they contain numeric data. These are arrays whose
sizes are altered using a ReDim statement to change their size during execution. Using ReDim to
change an array size while other threads are accessing the array could result in a system crash that
requires rebooting.

Creating Thread-Safe Interlocks

Thread-safe interlocks may be created using the GPL Thread.TestAndSetmethod. This method is
fully described in theGPL Dictionary section. Sample lock and unlock routines are shown below:

' Lock the semaphore. Wait until lock is obtained.
Public Sub acquire_sem(ByRef sem_var As Integer)

While Thread.TestAndSet(sem_var, 1) <> 0
Thread.Sleep(0)

End While
End Sub

' Unlock the semaphore
Public Sub release_sem(ByRef sem_var As Integer)

sem_var = 0
End Sub

This acquire_sem() routine waits indefinitely until the lock can be obtained. If desired, this routine
can be enhanced to wait for a limited time and return an error or throw an exception if that time limit
is exceeded.

You can use these routines to lock a thread during an unsafe data access, to guarantee that no
unsafe access occurs. The example below shows how to safely interlock an add operation on a
numeric array element.

Public my_lock As Integer
Public my_array(1) As Integer

Public Sub AddArray(ByVal inc As Integer)
acquire_sem(my_lock) ' Prohibit access by other threads
my_array(0) = my_array(0) + inc
release_sem(my_lock) ' Allow write access by other

threads
End Sub

For numeric values, the read operation is thread-safe, so no special action is required, but for a
string operation, both the read and write operations need to be interlocked. The example below
shows interlocking both the read and write operation for a string variable.

114 Copyright © 2024, Brooks Automation



Brooks Automation 18. Thread Control
Part Number: 609644 Rev. A Thread-Safe Data Access in GPL

Public my_lock As Integer

Public Sub AppendString(ByRef sg As String, ByVal app As String)
acquire_sem(my_lock) ' Prohibit access by other threads
sg &= app ' Modify string while locked
release_sem(my_lock) ' Allow access by other threads

End Sub

Public Function ReadString(ByRef sg As String) As String
Dim ret_string As String
acquire_sem(my_lock) ' Prohibit access by other threads
ret_string = sg ' Copy string while locked
release_sem(my_lock) ' Allow access by other threads
Return ret_string

End Function

Copyright © 2024, Brooks Automation 115



19. XML Data Exchange Guidance Programming Language
XML Data Exchange Overview Part Number: 609644 Rev. A

19. XML Data Exchange

XML Data Exchange Overview

XML (eXtensible Markup Language) is a standard text formatting language derived from SGML (the
Standard Generalized Markup Language, ISO 8879). It was originally designed to represent
documents for electronic publishing, but it has been adapted to represent structured data for
storage and transmission on networks. Details about XML can be found at http://www.w3.org/XML.
The complete specifications for XML can be found at http://www.w3.org/XML/Core/#Publications.

The GPL implementation of XML is primarily intended to simplify the storage and bi-directional
exchange of structured data between a host computer and a Guidance Controller. For example, the
information contained in both simple and complex data structures (such as GPL Objects) can be
easily and efficiently converted to an XML text file. This file can be stored in flash or transmitted to a
host computer where it can be decoded using standard XML tools. Conversely, an XML file
generated on a host computer can be read by GPL and converted to a tree of information that is
readily accessible by a GPL application program. This data can be used to reconstruct application
specific Objects or other data structures.

Given the intended use of XML, the GPL implementation does not include the extensive support
required for general document specification and editing. In particular, it has only limited support for
namespaces and entities.

The GPL methods and properties for handling XML are layered on top of the open-source libxml2
library, available at http://xmlsoft.org. Links to documentation for this library may be found at that
website.

The XML text file contains 7-bit ASCII or UTF-8 characters that encode the data. Symbols and
strings enclosed in < > have special meaning to XML.

The following lines illustrate some sample XML text:

<?xml version="1.0"?>
<procedureControl cellId="TestCell">
<command>start</command>

</procedureControl>

116 Copyright © 2024, Brooks Automation

http://www.w3.org/XML
http://www.w3.org/XML/Core/#Publications
http://xmlsoft.org/


Brooks Automation 19. XML Data Exchange
Part Number: 609644 Rev. A Document Object Model (DOM)

The first line contains a comment indicating the XML version. The next line begins an entity named
procedureControl that has an attribute named cellId with a value of "TestCell". It is followed by a
nested entity named command with the value of "start". The final line ends the
procedureControlentity. Entities and attributes are part of the Document Object Model described in
the next section.

Document Object Model (DOM)

Because XML historically was designed for electronic publishing, a single, self-contained section of
XML is called a document, even though it may contain arbitrary data. GPL parses existing XML text
documents and creates new XML documents, by converting them to and from a tree structure
stored in the controller’s memory. A parsed XML document consists of nodes for items in the
document, arranged in a tree that reflects how items in the document are nested. The tree is
constructed using a subset of the Document Object Model (DOM) Core Interfaces as described in:
http://www.w3.org/TR/REC-DOM-Level-1 and methods similar to those found in Visual Basic.NET.

The top-level node in a DOM tree is the document node. There is only one such node for each
document. The organization of child nodes in the document corresponds to the organization of the
data in the XML text file. The various child nodes contain the names of the data sections and also
the data from the text document.

All nodes have a type. Some common types are shown in Table 19-1.

Node Type Description
Document The top-level node in a document. Only one such node exists per DOM tree.

Element The basic node type. An element corresponds to an XML tag that begins with “<”. For example
the element named sample begins with “<sample>” and ends with “</sample>”.

Attribute
An attribute of a node. It normally has either a document or element as its parent. In XML text,
attributes are embedded inside the element name start tag. For example an attribute named
color of element sample appears as <sample color=”value”>.

Text The data contents of an element or attribute. It holds whatever is between two element tags, or
the “value” of an attribute.

CDATA
section

A special text node that allows special characters in the data without encoding them. The data
starts with “<!CDATA[” and ends with “]]>”.

Comment A special text node that contains a comment not considered part of the document data. The
comment data begins with “<?--“ and ends with “-->”.

Processing
Instruction

A special text node that contains processor-specific information. The information data begins
with "<?" and ends with "?>".

Table 19-1: Node Types

When an XML text document is parsed, GPL creates a new DOM tree in the controller’s memory
with child nodes that contain all the parsed data. The XML classes and methods that are provided in
GPL allow an application program to efficiently access the data contained in the tree. If desired, the
data in the tree may be modified and written back out in the XML text format.

Copyright © 2024, Brooks Automation 117

http://www.w3.org/TR/REC-DOM-Level-1


19. XML Data Exchange Guidance Programming Language
Character Representation Part Number: 609644 Rev. A

In order to create an XML text file, a GPL programmust first create a new document tree in the
controller’s memory and add nodes that contain the desired data. An XML method can then be
executed that converts the tree in memory to the XML text format.

Character Representation

This GPL implementation expects all external character data to be encoded in UTF-8. Since 7-bit
ASCII characters are a subset of UTF-8, all data will be properly interpreted if you confine your data
to the 7-bit ASCII subset.

In addition, XML text files include certain special characters to delimit data sections. The critical
characters are " (double quote), & (ampersand), ' (apostrophe), < (less than), and > (greater than).
You must not use these characters in any name or data fields when creating tree nodes or setting
node values. For efficiency, GPL does not automatically check for these characters or convert them.
If you need to use these characters, you can encode them with the method
XmlDoc.EncodeEntities. If you receive data with encoded entities, you can change them to normal
7-bit ASCII with the method XmlDoc.DecodeEntities.

XmlDoc Class

GPL includes an XmlDoc class. The objects of this class operate on the top-level of a DOM tree
(which contains an entire XML document). The XmlDocmethods deal with the document as a
whole and, except for a method that allocates new nodes, these methods do not operate on specific
nodes in the DOM tree. For example, this class includes the method for converting an XML text file
into a DOM tree and a method for the reverse operation.

There is one and only one XmlDoc object for each separate XML document that is represented as a
DOM tree. An XML DOM tree cannot exist without an XmlDoc object. When the last reference to an
XmlDoc object is freed, the entire DOM tree is also freed. Any XmlNode objects that refer to nodes
in the tree are marked as invalid.

The XmlDoc class interface is summarized in Table 19-2.  Each of these properties and methods is
described in detail in the GPL Dictionary contained in the Software Reference section of the
PreciseFlex Library.

XmlDoc Class
Member Type Description

New Constructor
Method Creates a new document tree with the specified name.

xmldoc_obj.CreateNode Method Returns a new XmlNode object for this document with the specified type,
and name.

Table 19-2: XmlDoc Class Interface Summary

118 Copyright © 2024, Brooks Automation



Brooks Automation 19. XML Data Exchange
Part Number: 609644 Rev. A XmlNode Class

XmlDoc Class
Member Type Description

XmlDoc.DecodeEntities Shared
Method Converts a String containing encoded XML entities into raw text.

xmldoc_obj.
DocumentElement Method Returns the XmlNode element that is the root of the document.

XmlDoc.EncodeEntities Shared
Method Converts special characters in a String to XML entities.

xmldoc_obj.ErrorCode Get Property Returns the last parser error code number, or 0 if no error.

XmlDoc.LoadFile Shared
Method

Loads and parses an XML text document from a file and returns the
created XmlDoc DOM tree object.

XmlDoc.LoadString Shared
Method

Parses an XML text document from a String and returns the created
XmlDoc DOM tree object.

xmldoc_obj.Message Get Property Returns the last parser error message, or “” if no error.

xmldoc_obj.SaveFile Method Converts a DOM tree document to the XML text format and writes the data
to a file.

xmldoc_obj.SaveString Method Converts a DOM tree document to the XML text format and writes the data
to a String.

XmlNode Class

GPL includes an XmlNode class that provides access to and manipulation of individual nodes
within a DOM tree.

XmlNode objects point to DOM nodes but do not actually contain the DOM nodes. When an
XmlNode object is created or destroyed, the underlying DOM nodes are not affected provided that
they are part of a DOM tree. If a DOM node is destroyed by releasing the top-level XmlDoc node or
by releasing a parent DOM node, the XmlNode object is automatically unlinked from the DOM node
and any attempt to use the XmlNode object results in an error.

Table 19-3 summarizes the properties and methods for the XmlNode class. Each of these
properties and methods is described in detail in the GPL Dictionary contained in the Software
Reference section of the PreciseFlex Library.

XmlNode Class
Member Type Description

xmlnode_
obj.AddAttribute Method Adds an attribute node as a child of this node.

xmlnode_
obj.AddElement Method Adds an element node as a child of this node. Includes an optional value.

xmlnode_
obj.AddElementNode Method Adds an element node as a child of this node. Returns an XmlNode object for the

new node. Includes an optional value.
xmlnode_
obj.AppendChild Method Appends a new child node as the last child of this node. Merges text nodes.

Table 19-3: XmlNode Class, Properties & Methods

Copyright © 2024, Brooks Automation 119



19. XML Data Exchange Guidance Programming Language
XmlNode Class Part Number: 609644 Rev. A

XmlNode Class
Member Type Description

xmlnode_
obj.ChildNodeCount

Get
Property Returns the number of children of this node.

xmlnode_obj.Clone Method Returns a clone of this node. Optionally recursively clones the subtree under this
node.

xmlnode_
obj.FirstChild Method Returns the first child of this node.

xmlnode_
obj.GetAttribute Method Returns a String containing the value of the specified attribute that is a child of

this node.
xmlnode_
obj.GetAttributeNode Method Returns the node corresponding to the specified attribute that is a child of this

node.
xmlnode_
obj.GetElement Method Returns a String containing the value of the specified element that is a child of

this node.
xmlnode_
obj.GetElementNode Method Returns the node corresponding to the specified element that is a child of this

node.
xmlnode_
obj.HasAttribute Method Returns True if the specified attribute is a child of this node.

xmlnode_
obj.HasChildNodes

Get
Property Returns True if the node has any non-attribute child nodes.

xmlnode_
obj.HasElement Method Returns True if a specified element is a child of this node.

xmlnode_
obj.InsertAfter Method Inserts a new node as a child of this node after a referenced child node. Merges

text nodes.
xmlnode_
obj.InsertBefore Method Inserts a new node as a child of this node before a referenced child node.

Merges text nodes.
xmlnode_
objLastChild Method Returns the last child of this node.

xmlnode_obj.Name Get
Property Returns the node name as a String.

xmlnode_
obj.NextSibling Method Returns the next sibling of this node.

xmlnode_
obj.OwnerDocument Method Returns the XmlDoc associated with this node.

xmlnode_
obj.ParentNode Method Returns the parent of this node.

xmlnode_
obj.PreviousSibling Method Returns the previous sibling of this node.

xmlnode_
obj.RemoveAttribute Method Removes a specified attribute from this node's children.

xmlnode_
obj.RemoveChild Method Removes a child node from the list of children for this node.

xmlnode_
obj.RemoveElement Method Removes a specified element from this node's children.

xmlnode_
obj.ReplaceChild Method Replaces an old child node with a new child node.

xmlnode_
obj.SetAttribute Method Sets the value of an existing specified attribute that is a child of this node.

xmlnode_
obj.SetElement Method Sets the value of an existing specified element that is a child of this node.

120 Copyright © 2024, Brooks Automation



Brooks Automation 19. XML Data Exchange
Part Number: 609644 Rev. A Examples

XmlNode Class
Member Type Description

xmlnode_obj.Type Get
Property Returns the node type as a String.

xmlnode_obj.Value Method Returns the node value as a String or sets the node value.

Examples

Reading an XML file
' Input parameter file contains the path to the file to read.
' Output parameter doc is an XmlDoc variable that receives the
' parsed XML document that is generated.

Public Sub XmlReadFile(ByVal file As String, ByRef doc As
XmlDoc)

Dim exc As Exception
doc = XmlDoc.LoadFile(file)
If (doc.ErrorCode <> 0) Then

Console.Writeline("Input error " & CStr(doc.ErrorCode) _
& ", " & doc.Message)

exc = New Exception
exc.ErrorCode = doc.ErrorCode
Throw exc

End If
End Sub

Writing an XML file
' Input parameter file contains the path to the file to write.
' Input parameter doc is an XmlDoc object that contains the
' document tree that is converted.

Public Sub XmlWriteFile(ByVal file As String, ByVal doc As
XmlDoc)

Dim exc As Exception
Try

doc.SaveFile(file)
Catch exc

If doc.ErrorCode <> 0 Then
Console.Writeline("Output error " & _

CStr(doc.ErrorCode) & _
", " & doc.Message)

End If
Throw exc

End Try
End Sub

Copyright © 2024, Brooks Automation 121



19. XML Data Exchange Guidance Programming Language
Examples Part Number: 609644 Rev. A

Accessing data in an XML document tree

Assume we have an XML document tree that was generated from the following XML text:

<?xml version="1.0"?>
<procedureControl cellId="TestCell">
<command>start</command>
<procedure jobId="090507001" name="INS">
<type>protocol</type>
<testSet>INS_#_090507001</testSet>
<index>0</index>

</procedure>
</procedureControl>

The program below analyzes and displays part of the data contained in the tree.

Public Sub XmlParse(ByVal doc As XmlDoc)
Dim root As XmlNode
Dim command As XmlNode
Dim procedure As XmlNode
Dim attr As XmlNode
Dim ss As String
root = doc.DocumentElement
command = root.GetElementNode("command")
procedure = root.GetElementNode("procedure")
ss = root.GetAttribute("cellId")
Console.Writeline("cellId = " & ss)
ss = command.Value
Console.Writeline("command = " & ss)
ss = procedure.GetAttribute("jobId")
Console.Writeline("jobId = " & ss)
ss = procedure.GetElement("type")
Console.Writeline("type = " & ss)
ss = procedure.GetElement("testSet")
Console.Writeline("typeSet = " & ss)

End Sub

The output produced is:

cellId = TestCell
command = start
jobId = 090507001
type = protocol
typeSet = INS_#_090507001

Searching for an element in the document

If you do not know the structure of a document, you can search for an element by recursively
searching through the tree until you find a match. This method is much slower than looking for an
element where you expect to find it.

122 Copyright © 2024, Brooks Automation



Brooks Automation 19. XML Data Exchange
Part Number: 609644 Rev. A Error Handling

Public Sub XmlSearchTree(ByVal node As XmlNode, _
ByVal name As String, _
ByRef found As XmlNode)

Dim child As XmlNode
found = Nothing
If node.Name = name Then

If node.Type = "element" Then
Console.Writeline("Found " & name)
found = node
Return

End If
End If
child = node.FirstChild
While Not child Is Nothing

XmlSearchTree(child, name, found) 'recursive call
If Not found Is Nothing Then

Return
End If
child = child.NextSibling

End While
End Sub

Creating an XML document from a GPL program

The following program demonstrates how to create the XML document tree that corresponds to the
XML text shown above in the third example. If this document is output using the XmlWriteFile
program, the resulting XML text will be identical in content to the example except for indentation and
line breaks.

Public Sub XmlCreate(ByRef doc As XmlDoc)
Dim root As XmlNode
Dim elem As XmlNode
doc = New XmlDoc("procedureControl")
root = doc.DocumentElement
root.AddAttribute("cellId", "TestCell")
root.AddElement("command", "start")
elem = root.AddElementNode("procedure")
elem.AddAttribute("jobId", "090507001")
elem.AddAttribute("name", "INS")
elem.AddElement("type", "protocol")
elem.AddElement("testSet", "INS_#_090507001")
elem.AddElement("index", "0")

End Sub

Error Handling

Errors that occur while parsing an XML text document to create a DOM tree or that occur while
generating XML text from an existing DOM tree are accessed by properties of the associated
XmlDoc object. The XmlDoc ErrorCode property contains the last error generated by a major XML
operation. These operations include the LoadString and SaveStringmethods. Typically, such
XML methods generate much more detailed error information than is reflected in a simple error

Copyright © 2024, Brooks Automation 123



19. XML Data Exchange Guidance Programming Language
Error Handling Part Number: 609644 Rev. A

code. If an XML method generates an error, the XmlDoc Messagemethod should be examined for
additional detailed error information.

For example, the error code -799 "XML error" has a secondary error number associated with it. To
determine the meaning of the error, check the XmlDoc Messagemethod.

Only severe parsing errors throw an exception, so it is required that the application software test the
ErrorCodemethod after the LoadFile or LoadStringmethods are executed.

See the individual XmlNode dictionary pages for specifies on each method. In general, if a method
returns an XmlNode value, the value will be set to Nothing if an error occurs, otherwise, the method
throws an exception.

The error -801 "No XML node" occurs if you attempt to access a GPL XML object that is not
associated with any XML tree node. This situation can occur if you have an XmlNode object that
refers to a node, and then you remove the part of the XML tree that contains that node. For
example, this can occur if you release the XmlDoc object that contains the entire document or you
use the XmlNode RemoveChildmethod for the referenced node or one of its parents.

124 Copyright © 2024, Brooks Automation



Brooks Automation 20. Misc. Unsupported Features
Part Number: 609644 Rev. A

20. Misc. Unsupported Features

GPL does not support conditional compilation and its associated directives, e.g.  #If.

Copyright © 2024, Brooks Automation 125


	1. Safety
	Safety Setup
	Authorized Personnel Only
	Explanation of Hazards and Alerts
	Safety Text
	Safety Icons
	Signal Words and Color
	Alert Example

	General Safety Considerations
	Mechanical Hazards
	Electrical Hazards
	Ergonomic Hazards
	Emergency Stop Circuit (E-Stop)
	Recycling and Hazardous Materials

	2. GPL Overview
	3. Statement Structure
	4. Data Type and Variables
	Variable Declarations
	Data Type Arrays
	Scope of Names

	5. Objects and Classes
	Objects and Classes Overview
	Objects, Fields, Properties and Methods
	Classes of Objects
	The Dot “.” Operator
	Object Variables and the New Clause
	Copying Object Variables and Values
	Clone Method
	Nothing

	Objects as Procedure Arguments
	ByVal
	ByRef

	User-Defined Classes
	Class Variables
	Class Procedures
	Me Object
	Constructors

	Limitations

	6. Arithmetic Operations
	Arithmetic Expressions
	Arithmetic Functions and Methods

	7. Strings and String Expressions
	Strings and String Expressions Overview

	8. Assignment Statements
	Assignment Statements Overview

	9. Control Structures
	Control Structures Overview
	GoTo Statements
	If…Then…Else…End If Statements
	For…Next Statements
	While…End While Statements
	Do…Loop Statements
	Select…Case…End Select Statements
	Nested Control Structures


	10. Procedures, Delegates and Modules
	Subroutines and Functions
	Calling a Procedure
	Returning from a Procedure
	Procedure Arguments
	Not Supported

	Delegates
	Delegate Statement
	Creating Delegate Objects
	AddressOf Operator
	AddressOf vs. String

	Modules
	Scope of Items within Modules
	Special Initialization Procedures


	11. Exception Handling
	Exception Handling Overview
	Try...Catch...Finally...End Try Statements
	Throw Statement
	Exception Class and Objects

	12. Motion- and Controller-Related Classes
	Motion- and Controller-Related Classes Overview
	Signal Class
	Location Class and Objects
	Profile Class and Objects
	Move Class
	RefFrame Class and Objects
	Controller Class
	Robot Class
	Latch Class

	13. Networking Communications
	Networking Communications Overview
	Networking Definitions and Classes
	TCP Server
	TCP Server Example

	TCP Client
	TCP Client Example

	UDP Server and Client
	UDP Client Example - Read File using TFTP
	UDP Client Example - Write File using TFTP


	14. MODBUS/TCP Communications
	MODBUS/TCP Communications Overview
	Modbus Class
	Modbus Master Connection
	Modbus Master Examples

	15. File I/O, Serial I/O, and Streams
	File I/O, Serial I/O and Streams Overview
	Classes and Methods
	File I/O
	Steps for Writing a File
	Steps for Reading a File
	File I/O Example

	Serial I/O
	Steps for Communicating Using a Serial Port
	Serial I/O Example

	Console Output
	Example

	Non-Volatile Memory (NVRAM)
	/NVRAM Files
	Automatically Logging Error Messages to the NVRAM
	Non-Volatile Integer Data

	Flash Sub-Partitions
	Flash Corruption
	Sub-Partitions
	Creating Sub-Partitions


	16. Vision Guidance
	Vision Guidance Overview
	Classes and Methods
	Vision Interface
	Vision Procedure Example

	17. Managing and Executing GPL Projects
	Projects and Files
	Modules
	Executing a Project

	18. Thread Control
	Thread Control Overview
	Thread Synchronization
	Thread Scheduling
	The Thread Class
	Thread-Safe Data Access in GPL
	Thread-Safe Data Types in GPL
	Creating Thread-Safe Interlocks


	19. XML Data Exchange
	XML Data Exchange Overview
	Document Object Model (DOM)
	Character Representation
	XmlDoc Class
	XmlNode Class
	Examples
	Reading an XML file
	Writing an XML file
	Accessing data in an XML document tree
	Searching for an element in the document
	Creating an XML document from a GPL program

	Error Handling

	20. Misc. Unsupported Features

